memory_test.go 4.25 KB
Newer Older
xuxzh1's avatar
init  
xuxzh1 committed
1
2
3
4
5
6
7
8
9
10
11
12
package llm

import (
	"bytes"
	"fmt"
	"os"
	"testing"

	"github.com/stretchr/testify/assert"
	"github.com/stretchr/testify/require"

	"github.com/ollama/ollama/api"
xuxzh1's avatar
update  
xuxzh1 committed
13
	"github.com/ollama/ollama/discover"
xuxzh1's avatar
init  
xuxzh1 committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
)

func TestEstimateGPULayers(t *testing.T) {
	t.Setenv("OLLAMA_DEBUG", "1")

	modelName := "dummy"
	f, err := os.CreateTemp(t.TempDir(), modelName)
	require.NoError(t, err)
	defer f.Close()
	inputLayerCount := 5

	tensors := []Tensor{
		{Name: "blk.0.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.1.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.2.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.3.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "blk.4.attn.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
		{Name: "output.weight", Kind: uint32(0), Offset: uint64(0), Shape: []uint64{1, 1, 1, 1}, WriterTo: bytes.NewReader(make([]byte, 32))},
	}
	assert.Len(t, tensors, inputLayerCount+1)
	err = WriteGGUF(f, KV{
		"general.architecture":          "llama",
		"llama.context_length":          uint32(32),
		"llama.embedding_length":        uint32(4096),
		"llama.block_count":             uint32(inputLayerCount),
		"llama.attention.head_count":    uint32(32),
		"llama.attention.head_count_kv": uint32(32),
		"tokenizer.ggml.tokens":         []string{" "},
		"tokenizer.ggml.scores":         []float32{0},
		"tokenizer.ggml.token_type":     []int32{0},
	}, tensors)
	require.NoError(t, err)

	ggml, err := LoadModel(f.Name(), 0)
	if err != nil {
		t.Fatal(err)
	}

	// Simple CPU scenario
xuxzh1's avatar
update  
xuxzh1 committed
53
	gpus := []discover.GpuInfo{
xuxzh1's avatar
init  
xuxzh1 committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
		{
			Library: "cpu",
		},
	}
	projectors := []string{}
	opts := api.DefaultOptions()
	t.Run("cpu", func(t *testing.T) {
		estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
		assert.Equal(t, 0, estimate.Layers)
		assert.Equal(t, uint64(0), estimate.Graph)
	})

	// derived from the dummy ggml file above
	graphPartialOffload := uint64(202377216)
	graphFullOffload := uint64(171968512)
	layerSize := uint64(33554436)
	projectorSize := uint64(0)
	memoryLayerOutput := uint64(4)

	// Dual CUDA scenario with assymetry
	gpuMinimumMemory := uint64(2048)
xuxzh1's avatar
update  
xuxzh1 committed
75
	gpus = []discover.GpuInfo{
xuxzh1's avatar
init  
xuxzh1 committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
		{
			Library:       "cuda",
			MinimumMemory: gpuMinimumMemory,
		},
		{
			Library:       "cuda",
			MinimumMemory: gpuMinimumMemory,
		},
	}
	// Nested array: GPU0 layer space, GPU1 layer space, expected gpu0, expected gpu1
	for i, s := range []struct {
		layer0, layer1   uint64
		expect0, expect1 uint64
	}{
		{1, 1, 1, 1},
		{2, 1, 2, 1},
		{2, 2, 2, 2},
		{1, 2, 1, 2},
		{3, 3, 3, 3},
		{4, 4, 3, 3},
		{6, 6, 3, 3},
		{0, 3, 0, 3},
	} {
		t.Run(fmt.Sprintf("%v", s), func(t *testing.T) {
			gpus[0].FreeMemory = 0
			gpus[1].FreeMemory = 0
			gpus[0].FreeMemory += projectorSize
			if s.layer0 > 0 {
				gpus[0].FreeMemory += memoryLayerOutput
			} else {
				gpus[1].FreeMemory += memoryLayerOutput
			}
			gpus[0].FreeMemory += gpuMinimumMemory + layerSize + s.layer0*layerSize + 1
			gpus[1].FreeMemory += gpuMinimumMemory + layerSize + s.layer1*layerSize + 1
			gpus[0].FreeMemory += max(graphFullOffload, graphPartialOffload)
			gpus[1].FreeMemory += max(graphFullOffload, graphPartialOffload)
			estimate := EstimateGPULayers(gpus, ggml, projectors, opts)
			assert.Equal(t, int(s.expect0+s.expect1), estimate.Layers, "scenario %d: %v", i, s)
			assert.Equal(t, fmt.Sprintf("%d,%d", s.expect0, s.expect1), estimate.TensorSplit, "scenario %d: %v", i, s)
			var layerSums uint64
			for _, b := range estimate.GPUSizes {
				layerSums += b
			}
			if estimate.Layers < inputLayerCount+1 {
				assert.Less(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
				assert.Equal(t, estimate.VRAMSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
			} else {
				assert.Equal(t, estimate.VRAMSize, estimate.TotalSize, "scenario %d: %v %+v", i, s, estimate)
				assert.Equal(t, estimate.TotalSize, layerSums, "scenario %d: %v %+v", i, s, estimate)
			}
		})
	}
}