convert_test.go 7.56 KB
Newer Older
Michael Yang's avatar
Michael Yang committed
1
2
3
package convert

import (
4
	"bytes"
5
	"crypto/sha256"
6
	"encoding/binary"
Michael Yang's avatar
lint  
Michael Yang committed
7
	"encoding/hex"
8
9
10
11
	"encoding/json"
	"flag"
	"fmt"
	"io"
12
	"io/fs"
13
14
	"log/slog"
	"math"
Michael Yang's avatar
Michael Yang committed
15
16
	"os"
	"path/filepath"
17
	"slices"
Michael Yang's avatar
Michael Yang committed
18
19
	"testing"

20
	"golang.org/x/exp/maps"
Michael Yang's avatar
lint  
Michael Yang committed
21
22

	"github.com/ollama/ollama/llm"
Michael Yang's avatar
Michael Yang committed
23
24
)

25
func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
Michael Yang's avatar
Michael Yang committed
26
27
28
29
30
31
32
33
	t.Helper()

	f, err := os.CreateTemp(t.TempDir(), "f16")
	if err != nil {
		t.Fatal(err)
	}
	defer f.Close()

34
	if err := ConvertModel(fsys, f); err != nil {
Michael Yang's avatar
Michael Yang committed
35
36
37
38
39
40
41
		t.Fatal(err)
	}

	r, err := os.Open(f.Name())
	if err != nil {
		t.Fatal(err)
	}
42
	t.Cleanup(func() { r.Close() })
Michael Yang's avatar
Michael Yang committed
43

44
	m, _, err := llm.DecodeGGML(r, math.MaxInt)
Michael Yang's avatar
Michael Yang committed
45
46
47
48
	if err != nil {
		t.Fatal(err)
	}

49
50
51
52
53
54
55
	if _, err := r.Seek(0, io.SeekStart); err != nil {
		t.Fatal(err)
	}

	return r, m.KV(), m.Tensors()
}

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
	actual := make(map[string]string)
	for k, v := range kv {
		if s, ok := v.(json.Marshaler); !ok {
			actual[k] = fmt.Sprintf("%v", v)
		} else {
			bts, err := json.Marshal(s)
			if err != nil {
				t.Fatal(err)
			}

			actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
		}
	}

	for _, tensor := range tensors.Items {
		sha256sum := sha256.New()
		sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
		if _, err := io.Copy(sha256sum, sr); err != nil {
			t.Fatal(err)
		}

		actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
	}

	return actual
}

84
85
86
87
88
89
func TestMain(m *testing.M) {
	var level slog.Level
	flag.TextVar(&level, "level", slog.LevelInfo, "log level")
	flag.Parse()
	slog.SetLogLoggerLevel(level)
	os.Exit(m.Run())
Michael Yang's avatar
Michael Yang committed
90
91
92
}

func TestConvertFull(t *testing.T) {
93
94
	cases := []string{
		"Meta-Llama-3-8B-Instruct",
Michael Yang's avatar
Michael Yang committed
95
		"Meta-Llama-3.1-8B-Instruct",
96
97
98
		"Mistral-7B-Instruct-v0.2",
		"Mixtral-8x7B-Instruct-v0.1",
		"gemma-2b-it",
99
100
		// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
		"Phi-3-mini-128k-instruct",
Michael Yang's avatar
bert  
Michael Yang committed
101
		"all-MiniLM-L6-v2",
Michael Yang's avatar
Michael Yang committed
102
		"gemma-2-9b-it",
Michael Yang's avatar
Michael Yang committed
103
104
	}

105
106
107
108
109
110
111
112
113
	for i := range cases {
		tt := cases[i]
		t.Run(tt, func(t *testing.T) {
			t.Parallel()

			p := filepath.Join("testdata", tt)
			if testing.Short() {
				t.Skip("skipping in short mode")
			} else if _, err := os.Stat(p); err != nil {
Michael Yang's avatar
Michael Yang committed
114
115
116
				t.Skipf("%s not found", p)
			}

117
			f, kv, tensors := convertFull(t, os.DirFS(p))
118
			actual := generateResultsJSON(t, f, kv, tensors)
Michael Yang's avatar
Michael Yang committed
119

120
121
122
			expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
			if err != nil {
				t.Fatal(err)
Michael Yang's avatar
Michael Yang committed
123
124
			}

125
126
127
			var expect map[string]string
			if err := json.NewDecoder(expectFile).Decode(&expect); err != nil {
				t.Fatal(err)
Michael Yang's avatar
Michael Yang committed
128
129
			}

130
131
132
133
134
135
136
137
			keys := maps.Keys(expect)
			slices.Sort(keys)
			for _, k := range keys {
				if v, ok := actual[k]; !ok {
					t.Errorf("missing %s", k)
				} else if v != expect[k] {
					t.Errorf("unexpected %s: want %s, got %s", k, expect[k], v)
				}
Michael Yang's avatar
Michael Yang committed
138
139
140
141
			}
		})
	}
}
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

func TestConvertAdapter(t *testing.T) {
	type AdapterCase struct {
		Name     string
		BaseKV   map[string]any
		Expected map[string]string
	}

	cases := []AdapterCase{
		{
			Name: "discollama",
			BaseKV: map[string]any{
				"general.architecture":          "llama",
				"llama.attention.head_count":    uint32(32),
				"llama.attention.head_count_kv": uint32(8),
			},
			Expected: map[string]string{
				"general.architecture":          "llama",
				"general.file_type":             "1",
				"general.parameter_count":       "106496",
				"general.type":                  "adapter",
				"general.version":               "v0.2",
				"adapter.lora.alpha":            "16",
				"adapter.type":                  "lora",
				"llama.attention.head_count":    "32",
				"llama.attention.head_count_kv": "8",
				"blk.31.attn_q.weight.lora_a":   "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
				"blk.31.attn_q.weight.lora_b":   "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
				"blk.31.attn_v.weight.lora_a":   "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
				"blk.31.attn_v.weight.lora_b":   "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857",
			},
		},
	}

	for _, c := range cases {
		t.Run(c.Name, func(t *testing.T) {
			t.Parallel()

			f, err := os.CreateTemp(t.TempDir(), "f16")
			if err != nil {
				t.Fatal(err)
			}
			defer f.Close()

			tempDir := t.TempDir()
			generateLoraTestData(t, tempDir)

			if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil {
				t.Fatal(err)
			}

			r, err := os.Open(f.Name())
			if err != nil {
				t.Fatal(err)
			}
			defer r.Close()

			m, _, err := llm.DecodeGGML(r, math.MaxInt)
			if err != nil {
				t.Fatal(err)
			}

			if _, err := r.Seek(0, io.SeekStart); err != nil {
				t.Fatal(err)
			}

			actual := generateResultsJSON(t, r, m.KV(), m.Tensors())

			keys := maps.Keys(c.Expected)
			slices.Sort(keys)
			for _, k := range keys {
				if v, ok := actual[k]; !ok {
					t.Errorf("missing %s", k)
				} else if v != c.Expected[k] {
					t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
				}
			}
		})
	}
}

func generateLoraTestData(t *testing.T, tempDir string) {
	type tensorData struct {
		Offsets []int  `json:"data_offsets"`
		Type    string `json:"dtype"`
		Shape   []int  `json:"shape"`
	}
	offset := 4096 * 8 * 4

	td := map[string]*tensorData{"__metadata__": nil}
	td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{
		Offsets: []int{0, offset},
		Type:    "F32",
		Shape:   []int{4096, 8},
	}
	td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{
		Offsets: []int{offset, offset * 2},
		Type:    "F32",
		Shape:   []int{8, 4096},
	}
	td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{
		Offsets: []int{offset * 2, offset * 3},
		Type:    "F32",
		Shape:   []int{4096, 8},
	}
	td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{
		Offsets: []int{offset * 3, offset*3 + 8*1024*4},
		Type:    "F32",
		Shape:   []int{8, 1024},
	}

	data, err := json.Marshal(td)
	if err != nil {
		t.Fatal(err)
	}

	var buf bytes.Buffer

	l := int64(len(data))
	err = binary.Write(&buf, binary.LittleEndian, l)
	if err != nil {
		t.Fatal(err)
	}

	_, err = buf.Write(data)
	if err != nil {
		t.Fatal(err)
	}

	// write some data for the tensors

	ones := make([]float32, 4096*8)
	for i := range ones {
		ones[i] = float32(1)
	}

	for range 3 {
		err = binary.Write(&buf, binary.LittleEndian, ones)
		if err != nil {
			t.Fatal(err)
		}
	}

	ones = make([]float32, 1024*8)
	for i := range ones {
		ones[i] = float32(1)
	}

	err = binary.Write(&buf, binary.LittleEndian, ones)
	if err != nil {
		t.Fatal(err)
	}

	fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors"))
	if err != nil {
		t.Fatal(err)
	}
	defer fdata.Close()

	_, err = fdata.Write(buf.Bytes())
	if err != nil {
		t.Fatal(err)
	}

	configData := `
{
    "adapter_path": "adapters-test",
    "batch_size": 8,
    "config": "config-tiny.json",
    "data": "../discollama-completion",
    "grad_checkpoint": null,
    "iters": 1000,
    "learning_rate": 1e-05,
    "lora_layers": 1,
    "lora_parameters": {
        "rank": 8,
        "alpha": 16,
        "dropout": 0.0,
        "scale": 2.0
    },
    "lr_schedule": null,
    "max_seq_length": 2048,
    "model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct",
    "resume_adapter_file": null,
    "save_every": 100,
    "seed": 0,
    "steps_per_eval": 200,
    "steps_per_report": 10,
    "test": false,
    "test_batches": 500,
    "train": true,
    "use_dora": false,
    "val_batches": 25
}
`
	f, err := os.Create(filepath.Join(tempDir, "adapter_config.json"))
	if err != nil {
		t.Fatal(err)
	}
	defer f.Close()

	_, err = f.WriteString(configData)
	if err != nil {
		t.Fatal(err)
	}
}