llava.cpp 25.6 KB
Newer Older
1
2
3
#include "clip.h"
#include "llava.h"

4
#include "llama.h"
5
#include "ggml-cpp.h"
6
7
8

#include <algorithm>
#include <cerrno>
9
10
#include <cstdio>
#include <cstdlib>
11
12
#include <cstring>
#include <limits>
13
#include <vector>
14
#include <memory>
15

16
17
18
19
20
21
22
23
24
25
26
#if defined(LLAVA_LOG_OFF)
#   define LOG_INF(...)
#   define LOG_WRN(...)
#   define LOG_ERR(...)
#   define LOG_DBG(...)
#else // defined(LLAVA_LOG_OFF)
#   define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#   define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#   define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
#   define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
#endif // defined(LLAVA_LOG_OFF)
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

// RGB uint8 image
struct clip_image_u8 {
    int nx;
    int ny;

    std::vector<uint8_t> buf;
};

// RGB float32 image (NHWC)
// Memory layout: RGBRGBRGB...
struct clip_image_f32 {
    int nx;
    int ny;

    std::vector<float> buf;
};

struct clip_image_grid_shape {
    int first;
    int second;
};

50
51
52
53
54
55
56
57
58
59
60
// convenience cpp wrapper
struct clip_image_f32_batch_deleter {
    void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_f32_batch, clip_image_f32_batch_deleter> clip_image_f32_batch_ptr;

struct clip_image_size_deleter {
    void operator()(clip_image_f32_batch * val) { clip_image_f32_batch_free(val); }
};
typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
/**
 * Selects the best resolution from a list of possible resolutions based on the original size.
 *
 * @param original_size The original size of the image in the format (width, height).
 * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
 * @return The best fit resolution in the format (width, height).
 */
static std::pair<int, int> select_best_resolution(const std::pair<int, int>& original_size, const std::vector<std::pair<int, int>>& possible_resolutions) {
    int original_width  = original_size.first;
    int original_height = original_size.second;

    std::pair<int, int> best_fit;
    int max_effective_resolution = 0;
    int min_wasted_resolution = std::numeric_limits<int>::max();

    for (const auto& resolution : possible_resolutions) {
        int width = resolution.first;
        int height = resolution.second;
        float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
        int downscaled_width  = static_cast<int>(original_width * scale);
        int downscaled_height = static_cast<int>(original_height * scale);
        int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
        int wasted_resolution = (width * height) - effective_resolution;
84
        // LOG_DBG("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
        if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
            max_effective_resolution = effective_resolution;
            min_wasted_resolution = wasted_resolution;
            best_fit = resolution;
        }
    }

    return best_fit;
}

/**
 * @brief Get the anyres image grid shape object
 *
 * @param image_size
 * @param grid_pinpoints
 * @param image_patch_size
 * @return <int, int>
 */
static struct clip_image_grid_shape get_anyres_image_grid_shape(const std::pair<int, int> & image_size, const std::vector<std::pair<int, int>> & grid_pinpoints, int image_patch_size) {
    /**
        Conversion from gguf flat array to vector:
        std::vector<std::pair<int, int>> possible_resolutions;
        for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
            possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
        }
     */
    auto best_resolution = select_best_resolution(image_size, grid_pinpoints);
    return {best_resolution.first / image_patch_size, best_resolution.second / image_patch_size};
}

// Take the image segments in a grid configuration and return the embeddings and the number of embeddings into preallocated memory (image_embd_out)
116
static bool clip_llava_handle_patches(clip_ctx * ctx_clip, std::vector<float *> & image_embd_v, struct clip_image_grid_shape grid_shape, float * image_embd_out, int * n_img_pos_out, clip_image_f32 * img_input) {
117
118
119
120
    struct {
        struct ggml_context * ctx;
    } model;

121
122
    const int32_t image_size = clip_get_image_size(ctx_clip);
    const int32_t patch_size = clip_get_patch_size(ctx_clip);
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178

    int32_t num_patches_per_side = image_size / patch_size; // 336 / 14 = 24 - used for embedding-patching boxes (24*24 = 576 patches)

    int num_patches_width  = grid_shape.first;  // grid 1-4
    int num_patches_height = grid_shape.second; // grid 1-4

    const size_t num_images = num_patches_width * num_patches_height + 1;

    // TODO: size calculation is not calculated - it's only tens of MB
    size_t ctx_size = 0;

    {
        ctx_size += clip_embd_nbytes(ctx_clip) * num_images * 8; // image_features
        ctx_size += 1024*1024 * ggml_type_size(GGML_TYPE_F32);
    }

    struct ggml_init_params params {
        /*.mem_size   =*/ ctx_size,
        /*.mem_buffer =*/ NULL,
        /*.no_alloc   =*/ false, // NOTE: this should be false when using the legacy API
    };

    // Python reference code for full unpad:
    /*
        base_image_feature = image_feature[0]
        image_feature = image_feature[1:]
        image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
        image_feature = image_feature.flatten(1, 2).flatten(2, 3)
        image_feature = unpad_image(image_feature, image_sizes[image_idx])
        image_feature = torch.cat((
            image_feature,
            self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1)
        ), dim=-1)
        image_feature = image_feature.flatten(1, 2).transpose(0, 1)
        image_feature = torch.cat((base_image_feature, image_feature), dim=0)
    */
    // We now have two options: unpad or no unpad. Unpad removes tokens for faster llm eval.
    // In terms of result quality it appears to make no difference, so we'll start with the easier approach given 5D tensors are not supported in ggml yet.
    // Without unpad we have to split the sub-image embeddings into patches of 24 features each and permute them.
    // Once all images are processed to prepended the base_image_features without any changes.

    // Pytorch reference simplified, modified for ggml compatibility - confirmed identical output in python (for a 2x2 grid image (676x676 scaling))
    /*
        image_feature = image_feature.view(2, 2, 24, 24, 4096)
        image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
        image_feature = image_feature.view(2, 24, 2, 24, 4096)
        image_feature = image_feature.flatten(0, 3)

        // Reshape to 4D tensor by merging the last two dimensions
        image_feature = image_feature.view(2, 2, 24, 24*4096)
        image_feature = image_feature.permute(0, 2, 1, 3).contiguous()
        image_feature = image_feature.view(-1, 4096)
    */

    model.ctx = ggml_init(params);

179
    struct ggml_tensor * image_features = ggml_new_tensor_3d(model.ctx, GGML_TYPE_F32, clip_n_mmproj_embd(ctx_clip), clip_n_output_tokens(ctx_clip, img_input), num_images - 1); // example: 4096 x 576 x 4
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    // ggml_tensor_printf(image_features,"image_features",__LINE__,false,false);
    // fill it with the image embeddings, ignoring the base
    for (size_t i = 1; i < num_images; i++) {
        size_t offset = (i-1) * clip_embd_nbytes(ctx_clip);
        memcpy((uint8_t *)(image_features->data) + offset, image_embd_v[i], clip_embd_nbytes(ctx_clip));
    }

    struct ggml_cgraph  * gf = ggml_new_graph(model.ctx);
    size_t size_ele = ggml_type_size(GGML_TYPE_F32);

    struct ggml_tensor *image_features_patchview = ggml_view_4d(model.ctx, image_features,
                                                                num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
                                                                num_patches_per_side,
                                                                num_patches_width,
                                                                num_patches_height,
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip),
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side,
                                                                size_ele * num_patches_per_side * clip_n_mmproj_embd(ctx_clip) * num_patches_per_side * num_patches_width, 0);
    // ggml_tensor_printf(image_features_patchview,"image_features_patchview",__LINE__,false,false);
    struct ggml_tensor *permuted_cont = ggml_cont(model.ctx, ggml_permute(model.ctx, image_features_patchview, 0, 2, 1, 3));
    /**
     At the end of each row we have to add the row_end embeddings, which are the same as the newline embeddings
         image_feature = torch.cat((
        image_feature,
        self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)
    ), dim=-1)
     *
     */

    // ggml_tensor_printf(permuted_cont,"permuted_cont",__LINE__,false,false);
    struct ggml_tensor *flatten = ggml_view_2d(model.ctx, permuted_cont, clip_n_mmproj_embd(ctx_clip), num_patches_height * num_patches_width * num_patches_per_side * num_patches_per_side,  size_ele * clip_n_mmproj_embd(ctx_clip), 0);
    // ggml_tensor_printf(flatten,"flatten",__LINE__,false,false);
    ggml_build_forward_expand(gf, flatten);
213
214
215
216
217

    ggml_backend_ptr backend { ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr) };
    GGML_ASSERT(backend != nullptr && "failed to initialize CPU backend");
    ggml_backend_graph_compute(backend.get(), gf);

218
    struct ggml_tensor* result = ggml_graph_node(gf, -1);
219
220
221

    memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as global context
    // append without newline tokens (default behavior in llava_arch when not using unpad ):
222
223
    memcpy(image_embd_out + clip_n_output_tokens(ctx_clip, img_input) * clip_n_mmproj_embd(ctx_clip), (float*)result->data, clip_embd_nbytes(ctx_clip) * (num_images-1)); // grid patches
    *n_img_pos_out = static_cast<int>(result->ne[1]+clip_n_output_tokens(ctx_clip, img_input));
224
225
226
227
228
229
230
231
232
233
234
235

    // Debug: Test single segments
    // Current findings: sending base image, sending a segment embedding all works similar to python
    // However, permuted embeddings do not work yet (stride issue?)
    // memcpy(image_embd_out, image_embd_v[0], clip_embd_nbytes(ctx_clip)); // main image as context
    // memcpy(image_embd_out, (float*)prepared_cont->data, clip_embd_nbytes(ctx_clip)); // main image as context
    // *n_img_pos_out=576;

    ggml_free(model.ctx);
    return true;
}

236
static clip_image_f32 * reshape_by_patch(clip_image_f32 * image, int patch_size) {
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    int width = image->nx;
    int height = image->ny;
    int num_patches = (height / patch_size) * (width / patch_size);
    clip_image_f32 * patch = clip_image_f32_init();
    patch->nx = patch_size * num_patches;
    patch->ny = patch_size;
    patch->buf.resize(3 * patch->nx * patch->ny);

    int patch_index = 0;

    for (int i = 0; i < height; i += patch_size) {
        for (int j = 0; j < width; j += patch_size) {
            for (int pi = 0; pi < patch_size; ++pi) {
                for (int pj = 0; pj < patch_size; ++pj) {
                    int input_index = ((i + pi) * width + (j + pj)) * 3;
                    int output_index = (pi * patch_size * num_patches + patch_index * patch_size + pj) * 3;
                    patch->buf[output_index] = image->buf[input_index];
                    patch->buf[output_index+1] = image->buf[input_index+1];
                    patch->buf[output_index+2] = image->buf[input_index+2];
                }
            }
            patch_index++;
        }
    }
    return patch;
}

static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float * image_embd, int * n_img_pos) {
    // std::vector<clip_image_f32*> img_res_v; // format VectN x H x W x RGB (N x 336 x 336 x 3), so interleaved RGB - different to the python implementation which is N x 3 x 336 x 336
266
267
    clip_image_f32_batch_ptr img_res_v(clip_image_f32_batch_init());
    if (!clip_image_preprocess(ctx_clip, img, img_res_v.get())) {
268
        LOG_ERR("%s: unable to preprocess image\n", __func__);
269
270
271
272
273
274
275
        return false;
    }

    const int64_t t_img_enc_start_us = ggml_time_us();

    const char * mm_patch_merge_type = clip_patch_merge_type(ctx_clip);

276
277
    const size_t n_imgs = clip_image_f32_batch_n_images(img_res_v.get());

278
    if (clip_is_minicpmv(ctx_clip) || clip_is_qwen2vl(ctx_clip)) {
279
        std::vector<float *> image_embd_v;
280
281
        image_embd_v.resize(n_imgs);
        clip_image_size load_image_size;
282

283
        for (size_t i = 0; i < n_imgs; i++) {
284
            const int64_t t_img_enc_step_start_us = ggml_time_us();
285
286
287
288
289
290
291
            int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
            int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
            image_embd_v[i] = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, nx, ny));
            int patch_size = 14;
            load_image_size.width = nx;
            load_image_size.height = ny;
            clip_add_load_image_size(ctx_clip, &load_image_size);
292

293
            bool encoded = false;
294
            clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
295
            if (clip_is_qwen2vl(ctx_clip)) {
296
                encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]);
297
            }
298
            else {
299
                encoded = clip_image_encode(ctx_clip, n_threads, reshape_by_patch(img_res, patch_size), image_embd_v[i]);
300
301
            }

302
            if (!encoded) {
303
                LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
304
305
306
                return false;
            }
            const int64_t t_img_enc_steop_batch_us = ggml_time_us();
307
            LOG_INF("%s: step %d of %d encoded in %8.2f ms\n", __func__, (int)i+1, (int)n_imgs, (t_img_enc_steop_batch_us - t_img_enc_step_start_us) / 1000.0);
308
309
        }
        const int64_t t_img_enc_batch_us = ggml_time_us();
310
        LOG_INF("%s: all %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
311
312
313

        int n_img_pos_out = 0;
        for (size_t i = 0; i < image_embd_v.size(); i++) {
314
315
316
            int nx = clip_image_f32_batch_nx(img_res_v.get(), i);
            int ny = clip_image_f32_batch_ny(img_res_v.get(), i);
            clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
317
318
319
            std::memcpy(
                image_embd + n_img_pos_out * clip_n_mmproj_embd(ctx_clip),
                image_embd_v[i],
320
                clip_embd_nbytes_by_img(ctx_clip, nx, ny));
321
            n_img_pos_out += clip_n_output_tokens(ctx_clip, img_res);
322
323
324
325
326
327
        }
        *n_img_pos = n_img_pos_out;
        for (size_t i = 0; i < image_embd_v.size(); i++) {
            free(image_embd_v[i]);
        }
        image_embd_v.clear();
328
329
330
331
        load_image_size.width = img->nx;
        load_image_size.height = img->ny;
        clip_add_load_image_size(ctx_clip, &load_image_size);
        LOG_INF("%s: load_image_size %d %d\n", __func__, load_image_size.width, load_image_size.height);
332
333
334
    }
    else if (clip_is_glm(ctx_clip)){
        struct clip_image_size * load_image_size = clip_image_size_init();
335
336
        load_image_size->width  = clip_image_f32_batch_nx(img_res_v.get(), 0);
        load_image_size->height = clip_image_f32_batch_ny(img_res_v.get(), 0);
337
338
        clip_add_load_image_size(ctx_clip, load_image_size);

339
340
341
        clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
        bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd);
        int pos = int(load_image_size->width/clip_get_patch_size(ctx_clip)/2);
342
343
344
345
346
        *n_img_pos = (pos * pos + 2);
        if (!encoded){
            LOG_ERR("Unable to encode image \n");
            return false;
        }
347
348
349
    }
    else if (strcmp(mm_patch_merge_type, "spatial_unpad") != 0) {
        // flat / default llava-1.5 type embedding
350
        clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), 0);
351
        *n_img_pos = clip_n_output_tokens(ctx_clip, img_res);
352
        bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd); // image_embd shape is 576 x 4096
353
        if (!encoded) {
354
            LOG_ERR("Unable to encode image\n");
355
356
357
358
359
360
361
362

            return false;
        }
    }
    else {
        // spatial_unpad llava-1.6 type embedding
        // TODO: CLIP needs batching support - in HF the llm projection is separate after encoding, which might be a solution to quickly get batching working
        std::vector<float *> image_embd_v;
363
364
365
        image_embd_v.resize(n_imgs);
        for (size_t i = 0; i < n_imgs; i++) {
            clip_image_f32 * img_res = clip_image_f32_get_img(img_res_v.get(), i);
366
            image_embd_v[i] = (float *)malloc(clip_embd_nbytes(ctx_clip)); // 576 patches * 4096 embeddings * 4 bytes = 9437184
367
            const bool encoded = clip_image_encode(ctx_clip, n_threads, img_res, image_embd_v[i]); // image data is in 3x336x336 format and will be converted to 336x336x3 inside
368
            if (!encoded) {
369
                LOG_ERR("Unable to encode image - spatial_unpad - subimage %d of %d\n", (int) i+1, (int) n_imgs);
370
371
372
373
                return false;
            }
        }
        const int64_t t_img_enc_batch_us = ggml_time_us();
374
        LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)n_imgs, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
375
376

        const int32_t * image_grid = clip_image_grid(ctx_clip);
377
        const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
378
379

        std::vector<std::pair<int, int>> grid_pinpoints;
380
        for (size_t i = 0; i < num_gridpoints; i += 2) {
381
382
383
            grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
        }

384
        const int32_t image_size = clip_get_image_size(ctx_clip);
385
386
387
388

        struct clip_image_grid_shape grid_shape = get_anyres_image_grid_shape({img->nx,img->ny}, grid_pinpoints, image_size);

        int n_img_pos_out;
389
390
        clip_image_f32 * img_input = clip_image_f32_get_img(img_res_v.get(), 0);
        clip_llava_handle_patches(ctx_clip, image_embd_v, grid_shape, image_embd, &n_img_pos_out, img_input);
391
392
393
394
395
396
397
398
399
400
401
402
403
        *n_img_pos = n_img_pos_out;

        for (size_t i = 0; i < image_embd_v.size(); i++) {
            free(image_embd_v[i]);
        }
        image_embd_v.clear();

        // debug image/segment/normalization content:
        // clip_image_u8 * tmp = clip_image_u8_init();
        // clip_image_convert_f32_to_u8(*image_feature, *tmp);
        // clip_image_save_to_bmp(*tmp, "image_feature.bmp");
    }

404
    LOG_INF("%s: image embedding created: %d tokens\n", __func__, *n_img_pos);
405
406
407
408

    const int64_t t_img_enc_end_us = ggml_time_us();
    float t_img_enc_ms = (t_img_enc_end_us - t_img_enc_start_us) / 1000.0;

409
    LOG_INF("\n%s: image encoded in %8.2f ms by CLIP (%8.2f ms per image patch)\n", __func__, t_img_enc_ms, t_img_enc_ms / *n_img_pos);
410
411
412
413
414
415

    return true;
}

bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx * ctx_clip) {
        // make sure that the correct mmproj was used, i.e., compare apples to apples
416
    int n_llama_embd = llama_model_n_embd(llama_get_model(ctx_llama));
417
418
    auto n_image_embd = clip_n_mmproj_embd(ctx_clip);
    if (n_image_embd != n_llama_embd) {
419
        LOG_ERR("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_image_embd, n_llama_embd);
420
421
422
423
424
425
        return false;
    }
    return true;
}

bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
426
427
    // Granite vision uses up to 10 patches + base patch
    int num_max_patches = 11;
428
429
430
    if (clip_is_minicpmv(ctx_clip)) {
        num_max_patches = 10;
    }
431
432
433
    if (clip_is_glm(ctx_clip)) {
        num_max_patches = 1;
    }
434
435
436
437
438
439
440
    float * image_embd;
    if (clip_is_qwen2vl(ctx_clip)) {
        // qwen2vl don't split image into chunks, so `num_max_patches` is not needed.
        image_embd = (float *)malloc(clip_embd_nbytes_by_img(ctx_clip, img->nx, img->ny));
    } else {
        image_embd = (float *)malloc(clip_embd_nbytes(ctx_clip)*num_max_patches); // TODO: base on gridsize/llava model
    }
441
    if (!image_embd) {
442
        LOG_ERR("Unable to allocate memory for image embeddings\n");
443
444
445
446
447
        return false;
    }

    int n_img_pos;
    if (!encode_image_with_clip(ctx_clip, n_threads, img, image_embd, &n_img_pos)) {
448
        LOG_ERR("%s: cannot encode image, aborting\n", __func__);
449
450
451
452
453
454
455
456
457
        free(image_embd);
        return false;
    }
    *image_embd_out = image_embd;
    *n_img_pos_out = n_img_pos;

    return true;
}

458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
struct llava_embd_batch {
    std::vector<llama_pos>      pos;
    std::vector<int32_t>        n_seq_id;
    std::vector<llama_seq_id>   seq_id_0;
    std::vector<llama_seq_id *> seq_ids;
    std::vector<int8_t>         logits;
    llama_batch batch;
    llava_embd_batch(float * embd, int32_t n_embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
        pos     .resize(n_tokens);
        n_seq_id.resize(n_tokens);
        seq_ids .resize(n_tokens + 1);
        logits  .resize(n_tokens);
        seq_id_0.resize(1);
        seq_id_0[0] = seq_id;
        seq_ids [n_tokens] = nullptr;
        batch = {
            /*n_tokens       =*/ n_tokens,
            /*tokens         =*/ nullptr,
            /*embd           =*/ embd,
            /*n_embd         =*/ n_embd,
            /*pos            =*/ pos.data(),
            /*n_seq_id       =*/ n_seq_id.data(),
            /*seq_id         =*/ seq_ids.data(),
            /*logits         =*/ logits.data(),
        };
        for (int i = 0; i < n_tokens; i++) {
            batch.pos     [i] = pos_0 + i;
            batch.n_seq_id[i] = 1;
            batch.seq_id  [i] = seq_id_0.data();
            batch.logits  [i] = false;
        }
    }
};

492
bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_embed * image_embed, int n_batch, int * n_past) {
493
    int n_embd  = llama_model_n_embd(llama_get_model(ctx_llama));
494
495
496
497
498
499

    for (int i = 0; i < image_embed->n_image_pos; i += n_batch) {
        int n_eval = image_embed->n_image_pos - i;
        if (n_eval > n_batch) {
            n_eval = n_batch;
        }
500
501
502
        float * embd = image_embed->embed+i*n_embd;
        llava_embd_batch llava_batch = llava_embd_batch(embd, n_embd, n_eval, *n_past, 0);
        if (llama_decode(ctx_llama, llava_batch.batch)) {
503
            LOG_ERR("%s : failed to eval\n", __func__);
504
505
506
507
508
509
510
511
512
513
514
            return false;
        }
        *n_past += n_eval;
    }
    return true;
}

struct llava_image_embed * llava_image_embed_make_with_bytes(struct clip_ctx * ctx_clip, int n_threads, const unsigned char * image_bytes, int image_bytes_length) {
    clip_image_u8 * img = clip_image_u8_init();
    if (!clip_image_load_from_bytes(image_bytes, image_bytes_length, img)) {
        clip_image_u8_free(img);
515
        LOG_ERR("%s: can't load image from bytes, is it a valid image?", __func__);
516
517
518
519
520
521
522
523
        return NULL;
    }

    float* image_embed = NULL;
    int n_image_pos = 0;
    bool image_embed_result = llava_image_embed_make_with_clip_img(ctx_clip, n_threads, img, &image_embed, &n_image_pos);
    if (!image_embed_result) {
        clip_image_u8_free(img);
524
        LOG_ERR("%s: couldn't embed the image\n", __func__);
525
526
527
528
529
530
531
532
533
534
535
536
537
        return NULL;
    }

    clip_image_u8_free(img);
    auto result = (llava_image_embed*)malloc(sizeof(llava_image_embed));
    result->embed = image_embed;
    result->n_image_pos = n_image_pos;
    return result;
}

static bool load_file_to_bytes(const char* path, unsigned char** bytesOut, long *sizeOut) {
    auto file = fopen(path, "rb");
    if (file == NULL) {
538
        LOG_ERR("%s: can't read file %s\n", __func__, path);
539
540
541
542
543
544
545
546
547
        return false;
    }

    fseek(file, 0, SEEK_END);
    auto fileSize = ftell(file);
    fseek(file, 0, SEEK_SET);

    auto buffer = (unsigned char *)malloc(fileSize); // Allocate memory to hold the file data
    if (buffer == NULL) {
548
        LOG_ERR("%s: failed to alloc %ld bytes for file %s\n", __func__, fileSize, path);
549
550
551
552
553
554
555
        perror("Memory allocation error");
        fclose(file);
        return false;
    }
    errno = 0;
    size_t ret = fread(buffer, 1, fileSize, file); // Read the file into the buffer
    if (ferror(file)) {
556
557
558
559
        LOG_ERR("read error: %s", strerror(errno));
        free(buffer);
        fclose(file);
        return false;
560
561
    }
    if (ret != (size_t) fileSize) {
562
563
564
565
        LOG_ERR("unexpectedly reached end of file");
        free(buffer);
        fclose(file);
        return false;
566
567
568
569
570
571
572
573
574
575
576
577
578
    }
    fclose(file); // Close the file

    *bytesOut = buffer;
    *sizeOut = fileSize;
    return true;
}

struct llava_image_embed * llava_image_embed_make_with_filename(struct clip_ctx * ctx_clip, int n_threads, const char * image_path) {
    unsigned char* image_bytes;
    long image_bytes_length;
    auto loaded = load_file_to_bytes(image_path, &image_bytes, &image_bytes_length);
    if (!loaded) {
579
        LOG_ERR("%s: failed to load %s\n", __func__, image_path);
580
581
582
583
584
585
586
587
588
589
590
591
592
        return NULL;
    }

    llava_image_embed *embed = llava_image_embed_make_with_bytes(ctx_clip, n_threads, image_bytes, image_bytes_length);
    free(image_bytes);

    return embed;
}

void llava_image_embed_free(struct llava_image_embed * embed) {
    free(embed->embed);
    free(embed);
}