- 16 May, 2019 1 commit
-
-
Lee authored
* add different tuner config files for config_test * change MetisTuner config test due to no lightgbm python module in integration test * install smac package in azure-pipelines * SMAC need swig to be installed * Try to install swig from source code * remove SMAC test because the dependency can not be installed * use sudo to install the swig * sleep 10s to make sure the port has been released * remove tuner test for networkmorphism because it uses more than 30s to release the tcp port * word "down" to "done" * add config test for Curvefitting assessor * change file name * Fix data type not match bug * Optimize MetisTunner * pretty the code * Follow the review comment * add exploration probability * Avoid None type object generating * fix nnictl log trial bug * rollback chinese doc * add argument 'experiment' to parser_log_trial and parser_trial_kill * update doc * add NASComparison for ResearchBlog * Fix format of table * update doc and add index to toctree * Update NASComparison.md Slightly change. * Update NASComparison.md Add http links in toctree * Move ResearchBlog to bottom move ResearchBlog to bottom * Follow the review comments * change the file structure * add utils * slight change * Remove unrelated files * add doc in SearchSpaceSpec.md and add config test for nested search space * add unittest * add unittest for hyperopt_tuner * update as comment * Update SearchSpaceSepc doc * Delete unnecessary space change and correct a mistake
-
- 19 Apr, 2019 2 commits
-
-
Shufan Huang authored
Handling import data in Tuner/Advisor
-
chicm-ms authored
* Refactoring environment variables
-
- 10 Apr, 2019 1 commit
-
-
Shufan Huang authored
create utils.py, put extract_scalar_reward to it and remove others
-
- 13 Dec, 2018 1 commit
-
-
Lee authored
* Quick fix nnictl config logic (#289) * fix nnictl bug * fix install.sh * add desc for Dockerfile.build.base * update document for Dockerfile * update * refactor port detect * update * refactor NNICTLDOC.md * add document for pai and nnictl * add default value for port * add exception handling in trial_keeper.py * fix port bug * fix resume * fix nnictl resume and fix nnictl stop * fix document * update * refactor nnictl * update * update doc * update * update nnictl * fix comment * revert dockerfile * update * update * update * fix nnictl error hit * fix comments * fix bash-completion * fix paramiko install * quick fix resume logic * update * quick fix nnictl * PR merge to 0.3 (#297) * refactor doc * update with Mao's suggestions * Set theme jekyll-theme-dinky * update doc * fix links * fix links * fix links * merge * fix links and doc errors * merge * merge * merge * merge * Update README.md (#288) added License badge * merge * updated the "Contribute" part (merged Gems' wiki in, updated ReadMe) * fix link * fix doc mistakes and broken links. (#271) * refactor doc * update with Mao's suggestions * Set theme jekyll-theme-dinky * updated the "Contribute" part (merged Gems' wiki in, updated ReadMe) * fix link * Update README.md * Fix misspelling in examples/trials/ga_squad/README.md * revise the installation cmd to v0.2 * revise to install v0.2 * remove enas readme (#292) * Fix datastore performance issue (#301) * Fix nnictl in v0.3 (#299) Fix old version of config file fix sklearn requirements Fix resume log logic * add basic tuner and trial for network morphism * Complete basic receive_trial_result() and generate_parameters(). Use onnx as the intermediate representation ( But it cannot convert to pytorch model ) * add tensorflow cifar10 for network morphism * add unit test for tuner and its function * use temporary torch_model * fix request bug and program can communicate nni * add basic pickle support for graph and train successful in pytorch * Update unittest for networkmorphism_tuner * Network Morphism add multi-gpu trial training support * Format code with black tool * change intermediate representation from pickle file to json we defined * successfully pass the unittest for test_graph_json_transform * add README for network morphism and it works fine in both Pytorch and Keras. * separate the original Readme.md in network-morphism into two parts (tuner and trial) * change the openpai image path * beautify the file structure of network_morphism and add a fashion_mnist keras example * pretty the source and add some docstring for funtion in order to pass the pylint. * remove unused module import and add some docstring * add some details for the application scenario Network Morphism Tuner * follow the advice and modify the doc file * add the config file for each task in the examples trial of network morphism * change default python interpreter from python to python3
-
- 26 Oct, 2018 1 commit
-
-
chicm-ms authored
* Rename get_parameters to get_next_parameter * annotations add get_next_parameter * updates * updates * updates * updates * updates
-
- 20 Aug, 2018 1 commit
-
-
Deshui Yu authored
-