Commit e5cb4ed8 authored by chicm-ms's avatar chicm-ms
Browse files

refine model compression examples (#1804)

parent 962d9aee
from nni.compression.torch import FPGMPruner
import torch
import torch.nn.functional as F
from torchvision import datasets, transforms
from nni.compression.torch import FPGMPruner
class Mnist(torch.nn.Module):
def __init__(self):
......@@ -23,8 +22,8 @@ class Mnist(torch.nn.Module):
return F.log_softmax(x, dim=1)
def _get_conv_weight_sparsity(self, conv_layer):
num_zero_filters = (conv_layer.weight.data.sum((2,3)) == 0).sum()
num_filters = conv_layer.weight.data.size(0) * conv_layer.weight.data.size(1)
num_zero_filters = (conv_layer.weight.data.sum((1, 2, 3)) == 0).sum()
num_filters = conv_layer.weight.data.size(0)
return num_zero_filters, num_filters, float(num_zero_filters)/num_filters
def print_conv_filter_sparsity(self):
......@@ -41,7 +40,8 @@ def train(model, device, train_loader, optimizer):
output = model(data)
loss = F.nll_loss(output, target)
if batch_idx % 100 == 0:
print('{:2.0f}% Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))
print('{:.2f}% Loss {:.4f}'.format(100 * batch_idx / len(train_loader), loss.item()))
if batch_idx == 0:
model.print_conv_filter_sparsity()
loss.backward()
optimizer.step()
......@@ -59,7 +59,7 @@ def test(model, device, test_loader):
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('Loss: {} Accuracy: {}%)\n'.format(
print('Loss: {:.4f} Accuracy: {}%)\n'.format(
test_loss, 100 * correct / len(test_loader.dataset)))
......@@ -78,9 +78,6 @@ def main():
model = Mnist()
model.print_conv_filter_sparsity()
'''you can change this to LevelPruner to implement it
pruner = LevelPruner(configure_list)
'''
configure_list = [{
'sparsity': 0.5,
'op_types': ['Conv2d']
......@@ -96,6 +93,7 @@ def main():
train(model, device, train_loader, optimizer)
test(model, device, test_loader)
pruner.export_model('model.pth', 'mask.pth')
if __name__ == '__main__':
main()
......@@ -26,7 +26,7 @@ class fc1(nn.Module):
def train(model, train_loader, optimizer, criterion):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.train()
for batch_idx, (imgs, targets) in enumerate(train_loader):
for imgs, targets in train_loader:
optimizer.zero_grad()
imgs, targets = imgs.to(device), targets.to(device)
output = model(imgs)
......@@ -64,7 +64,7 @@ if __name__ == '__main__':
criterion = nn.CrossEntropyLoss()
configure_list = [{
'prune_iterations': 10,
'prune_iterations': 5,
'sparsity': 0.96,
'op_types': ['default']
}]
......@@ -75,7 +75,7 @@ if __name__ == '__main__':
pruner.prune_iteration_start()
loss = 0
accuracy = 0
for epoch in range(50):
for epoch in range(10):
loss = train(model, train_loader, optimizer, criterion)
accuracy = test(model, test_loader, criterion)
print('current epoch: {0}, loss: {1}, accuracy: {2}'.format(epoch, loss, accuracy))
......
from nni.compression.tensorflow import AGP_Pruner
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def weight_variable(shape):
return tf.Variable(tf.truncated_normal(shape, stddev=0.1))
def bias_variable(shape):
return tf.Variable(tf.constant(0.1, shape=shape))
def conv2d(x_input, w_matrix):
return tf.nn.conv2d(x_input, w_matrix, strides=[1, 1, 1, 1], padding='SAME')
def max_pool(x_input, pool_size):
size = [1, pool_size, pool_size, 1]
return tf.nn.max_pool(x_input, ksize=size, strides=size, padding='SAME')
class Mnist:
def __init__(self):
images = tf.placeholder(tf.float32, [None, 784], name='input_x')
labels = tf.placeholder(tf.float32, [None, 10], name='input_y')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
self.images = images
self.labels = labels
self.keep_prob = keep_prob
self.train_step = None
self.accuracy = None
self.w1 = None
self.b1 = None
self.fcw1 = None
self.cross = None
with tf.name_scope('reshape'):
x_image = tf.reshape(images, [-1, 28, 28, 1])
with tf.name_scope('conv1'):
w_conv1 = weight_variable([5, 5, 1, 32])
self.w1 = w_conv1
b_conv1 = bias_variable([32])
self.b1 = b_conv1
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
with tf.name_scope('pool1'):
h_pool1 = max_pool(h_conv1, 2)
with tf.name_scope('conv2'):
w_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
with tf.name_scope('pool2'):
h_pool2 = max_pool(h_conv2, 2)
with tf.name_scope('fc1'):
w_fc1 = weight_variable([7 * 7 * 64, 1024])
self.fcw1 = w_fc1
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
with tf.name_scope('dropout'):
h_fc1_drop = tf.nn.dropout(h_fc1, 0.5)
with tf.name_scope('fc2'):
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=y_conv))
self.cross = cross_entropy
with tf.name_scope('adam_optimizer'):
self.train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(labels, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
def main():
tf.set_random_seed(0)
data = input_data.read_data_sets('data', one_hot=True)
model = Mnist()
'''you can change this to LevelPruner to implement it
pruner = LevelPruner(configure_list)
'''
configure_list = [{
'initial_sparsity': 0,
'final_sparsity': 0.8,
'start_epoch': 0,
'end_epoch': 10,
'frequency': 1,
'op_types': ['default']
}]
pruner = AGP_Pruner(tf.get_default_graph(), configure_list)
# if you want to load from yaml file
# configure_file = nni.compressors.tf_compressor._nnimc_tf._tf_default_load_configure_file('configure_example.yaml','AGPruner')
# configure_list = configure_file.get('config',[])
# pruner.load_configure(configure_list)
# you can also handle it yourself and input an configure list in json
pruner.compress()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for batch_idx in range(2000):
if batch_idx % 10 == 0:
pruner.update_epoch(batch_idx / 10, sess)
batch = data.train.next_batch(2000)
model.train_step.run(feed_dict={
model.images: batch[0],
model.labels: batch[1],
model.keep_prob: 0.5
})
if batch_idx % 10 == 0:
test_acc = model.accuracy.eval(feed_dict={
model.images: data.test.images,
model.labels: data.test.labels,
model.keep_prob: 1.0
})
print('test accuracy', test_acc)
test_acc = model.accuracy.eval(feed_dict={
model.images: data.test.images,
model.labels: data.test.labels,
model.keep_prob: 1.0
})
print('final result is', test_acc)
if __name__ == '__main__':
main()
from nni.compression.tensorflow import QAT_Quantizer
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def weight_variable(shape):
return tf.Variable(tf.truncated_normal(shape, stddev = 0.1))
def bias_variable(shape):
return tf.Variable(tf.constant(0.1, shape = shape))
def conv2d(x_input, w_matrix):
return tf.nn.conv2d(x_input, w_matrix, strides = [ 1, 1, 1, 1 ], padding = 'SAME')
def max_pool(x_input, pool_size):
size = [ 1, pool_size, pool_size, 1 ]
return tf.nn.max_pool(x_input, ksize = size, strides = size, padding = 'SAME')
class Mnist:
def __init__(self):
images = tf.placeholder(tf.float32, [ None, 784 ], name = 'input_x')
labels = tf.placeholder(tf.float32, [ None, 10 ], name = 'input_y')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
self.images = images
self.labels = labels
self.keep_prob = keep_prob
self.train_step = None
self.accuracy = None
self.w1 = None
self.b1 = None
self.fcw1 = None
self.cross = None
with tf.name_scope('reshape'):
x_image = tf.reshape(images, [ -1, 28, 28, 1 ])
with tf.name_scope('conv1'):
w_conv1 = weight_variable([ 5, 5, 1, 32 ])
self.w1 = w_conv1
b_conv1 = bias_variable([ 32 ])
self.b1 = b_conv1
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
with tf.name_scope('pool1'):
h_pool1 = max_pool(h_conv1, 2)
with tf.name_scope('conv2'):
w_conv2 = weight_variable([ 5, 5, 32, 64 ])
b_conv2 = bias_variable([ 64 ])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
with tf.name_scope('pool2'):
h_pool2 = max_pool(h_conv2, 2)
with tf.name_scope('fc1'):
w_fc1 = weight_variable([ 7 * 7 * 64, 1024 ])
self.fcw1 = w_fc1
b_fc1 = bias_variable([ 1024 ])
h_pool2_flat = tf.reshape(h_pool2, [ -1, 7 * 7 * 64 ])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
with tf.name_scope('dropout'):
h_fc1_drop = tf.nn.dropout(h_fc1, 0.5)
with tf.name_scope('fc2'):
w_fc2 = weight_variable([ 1024, 10 ])
b_fc2 = bias_variable([ 10 ])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = labels, logits = y_conv))
self.cross = cross_entropy
with tf.name_scope('adam_optimizer'):
self.train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(labels, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
def main():
tf.set_random_seed(0)
data = input_data.read_data_sets('data', one_hot = True)
model = Mnist()
'''you can change this to DoReFaQuantizer to implement it
DoReFaQuantizer(configure_list).compress(tf.get_default_graph())
'''
configure_list = [{'q_bits':8, 'op_types':['default']}]
quantizer = QAT_Quantizer(tf.get_default_graph(), configure_list)
quantizer.compress()
# you can also use compress(model) or compress_default_graph()
# method like QATquantizer(q_bits = 8).compress_default_graph()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for batch_idx in range(2000):
batch = data.train.next_batch(2000)
model.train_step.run(feed_dict = {
model.images: batch[0],
model.labels: batch[1],
model.keep_prob: 0.5
})
if batch_idx % 10 == 0:
test_acc = model.accuracy.eval(feed_dict = {
model.images: data.test.images,
model.labels: data.test.labels,
model.keep_prob: 1.0
})
print('test accuracy', test_acc)
test_acc = model.accuracy.eval(feed_dict = {
model.images: data.test.images,
model.labels: data.test.labels,
model.keep_prob: 1.0
})
print('final result is', test_acc)
if __name__ == '__main__':
main()
......@@ -82,8 +82,6 @@ def main():
pruner = AGP_Pruner(model, configure_list)
model = pruner.compress()
# you can also use compress(model) method
# like that pruner.compress(model)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
for epoch in range(10):
......
from nni.compression.torch import QAT_Quantizer
import torch
import torch.nn.functional as F
from torchvision import datasets, transforms
class Mnist(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = torch.nn.Conv2d(1, 20, 5, 1)
self.conv2 = torch.nn.Conv2d(20, 50, 5, 1)
self.fc1 = torch.nn.Linear(4 * 4 * 50, 500)
self.fc2 = torch.nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim = 1)
def train(model, device, train_loader, optimizer):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('{:2.0f}% Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction = 'sum').item()
pred = output.argmax(dim = 1, keepdim = True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('Loss: {} Accuracy: {}%)\n'.format(
test_loss, 100 * correct / len(test_loader.dataset)))
def main():
torch.manual_seed(0)
device = torch.device('cpu')
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train = True, download = True, transform = trans),
batch_size = 64, shuffle = True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train = False, transform = trans),
batch_size = 1000, shuffle = True)
model = Mnist()
'''you can change this to DoReFaQuantizer to implement it
DoReFaQuantizer(configure_list).compress(model)
'''
configure_list = [{'q_bits':8, 'op_types':['default']}]
quantizer = QAT_Quantizer(model, configure_list)
quantizer.compress()
# you can also use compress(model) method
# like thaht quantizer.compress(model)
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum = 0.5)
for epoch in range(10):
print('# Epoch {} #'.format(epoch))
train(model, device, train_loader, optimizer)
test(model, device, test_loader)
if __name__ == '__main__':
main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment