**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate**<ahref="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering</a>, <ahref="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>, <ahref="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a> and <ahref="docs/en_US/Compression/Overview.md">Model Compression</a>.
**NNI (Neural Network Intelligence)** is a lightweight but powerful toolkit to help users **automate**<ahref="docs/en_US/FeatureEngineering/Overview.md">Feature Engineering</a>, <ahref="docs/en_US/NAS/Overview.md">Neural Architecture Search</a>, <ahref="docs/en_US/Tuner/BuiltinTuner.md">Hyperparameter Tuning</a> and <ahref="docs/en_US/Compression/Overview.md">Model Compression</a>.
The tool manages automated machine learning (AutoML) experiments, **dispatches and runs** experiments' trial jobs generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in **different training environments** like <ahref="docs/en_US/TrainingService/LocalMode.md">Local Machine</a>, <ahref="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a>, <ahref="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a>, <ahref="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a>, <ahref="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a>, <ahref="docs/en_US/TrainingService/DLTSMode.md">DLWorkspace (aka. DLTS)</a>, <ahref="docs/en_US/TrainingService/AMLMode.md">AML (Azure Machine Learning)</a> and other cloud options.
The tool manages automated machine learning (AutoML) experiments, **dispatches and runs** experiments' trial jobs generated by tuning algorithms to search the best neural architecture and/or hyper-parameters in **different training environments** like <ahref="docs/en_US/TrainingService/LocalMode.md">Local Machine</a>, <ahref="docs/en_US/TrainingService/RemoteMachineMode.md">Remote Servers</a>, <ahref="docs/en_US/TrainingService/PaiMode.md">OpenPAI</a>, <ahref="docs/en_US/TrainingService/KubeflowMode.md">Kubeflow</a>, <ahref="docs/en_US/TrainingService/FrameworkControllerMode.md">FrameworkController on K8S (AKS etc.)</a>, <ahref="docs/en_US/TrainingService/DLTSMode.md">DLWorkspace (aka. DLTS)</a>, <ahref="docs/en_US/TrainingService/AMLMode.md">AML (Azure Machine Learning)</a>, <ahref="docs/en_US/TrainingService/AdaptDLMode.md">AdaptDL (aka. ADL)</a> and other cloud options.
## **Who should consider using NNI**
## **Who should consider using NNI**
...
@@ -173,11 +173,13 @@ Within the following table, we summarized the current NNI capabilities, we are g
...
@@ -173,11 +173,13 @@ Within the following table, we summarized the current NNI capabilities, we are g
***nfs**: (*Optional*) mounting external storage. For more information about using NFS please check the below paragraph.
***nfs**: (*Optional*) mounting external storage. For more information about using NFS please check the below paragraph.
***checkpoint** (*Optional*) [storage settings](https://kubernetes.io/docs/concepts/storage/storage-classes/) for AdaptDL internal checkpoints. You can keep it optional if you are not dev users.
***checkpoint**: (*Optional*) storage settings for model checkpoints.
***storageClass**: check [Kubernetes storage documentation](https://kubernetes.io/docs/concepts/storage/storage-classes/) for how to use the appropriate `storageClass`.
***storageSize**: this value should be large enough to fit your model's checkpoints, or it could cause disk quota exceeded error.