Commit db208207 authored by suiguoxin's avatar suiguoxin
Browse files

Merge branch 'master' of git://github.com/microsoft/nni

parents 0717988f ce2d8d9c
...@@ -4,33 +4,9 @@ ...@@ -4,33 +4,9 @@
## **在 Windows 上安装** ## **在 Windows 上安装**
**强烈推荐使用 Anaconda 或 Miniconda Python(64位)。** 详细信息参考[安装](Installation.md#installation-on-windows)
在第一次使用 PowerShell 运行脚本时,需要用**使用管理员权限**运行如下命令: 完成操作后,使用 **config_windows.yml** 配置来开始 Experiment 进行验证。
```bash
Set-ExecutionPolicy -ExecutionPolicy Unrestricted
```
* **通过 pip 命令安装 NNI**
先决条件:`python(64-bit) >= 3.5`
```bash
python -m pip install --upgrade nni
```
* __通过代码安装 NNI__
先决条件: `python >=3.5`, `git`, `PowerShell`
```bash
git clone -b v0.8 https://github.com/Microsoft/nni.git
cd nni
powershell -file install.ps1
```
运行完以上脚本后,从命令行使用 **config_windows.yml** 来启动 Experiment,完成安装验证。
```bash ```bash
nnictl create --config nni\examples\trials\mnist\config_windows.yml nnictl create --config nni\examples\trials\mnist\config_windows.yml
...@@ -85,4 +61,4 @@ Set-ExecutionPolicy -ExecutionPolicy Unrestricted ...@@ -85,4 +61,4 @@ Set-ExecutionPolicy -ExecutionPolicy Unrestricted
注意: 注意:
* 如果遇到 `Segmentation fault` 这样的错误,参考[常见问答](FAQ.md) * 如果遇到如 `Segmentation fault` 这样的任何错误,参考[常见问题](FAQ.md)
\ No newline at end of file \ No newline at end of file
...@@ -164,7 +164,7 @@ trial: ...@@ -164,7 +164,7 @@ trial:
**注意**:如果使用 Windows,则需要在 config.yml 文件中,将 `python3` 改为 `python`,或者使用 config_windows.yml 来开始 Experiment。 **注意**:如果使用 Windows,则需要在 config.yml 文件中,将 `python3` 改为 `python`,或者使用 config_windows.yml 来开始 Experiment。
```bash ```bash
nnictl create --config nni/examples/trials/mnist/config_windows.yml nnictl create --config nni\examples\trials\mnist\config_windows.yml
``` ```
注意:**nnictl** 是一个命令行工具,用来控制 NNI Experiment,如启动、停止、继续 Experiment,启动、停止 NNIBoard 等等。 查看[这里](Nnictl.md),了解 `nnictl` 更多用法。 注意:**nnictl** 是一个命令行工具,用来控制 NNI Experiment,如启动、停止、继续 Experiment,启动、停止 NNIBoard 等等。 查看[这里](Nnictl.md),了解 `nnictl` 更多用法。
......
...@@ -29,16 +29,16 @@ ...@@ -29,16 +29,16 @@
* 表示变量的值是选项之一。 这里的 'options' 是一个数组。 选项的每个元素都是字符串。 也可以是嵌套的子搜索空间。此子搜索空间仅在相应的元素选中后才起作用。 该子搜索空间中的变量可看作是条件变量。 * 表示变量的值是选项之一。 这里的 'options' 是一个数组。 选项的每个元素都是字符串。 也可以是嵌套的子搜索空间。此子搜索空间仅在相应的元素选中后才起作用。 该子搜索空间中的变量可看作是条件变量。
* 这是个简单的 [nested] 搜索空间定义的[示例](https://github.com/microsoft/nni/tree/master/examples/trials/mnist-nested-search-space/search_space.json)。 如果选项列表中的元素是 dict,则它是一个子搜索空间,对于内置的 Tuner,必须在此 dict 中添加键 “_name”,这有助于标识选中的元素。 相应的,这是从 NNI 获得的嵌套搜索空间定义[示例](https://github.com/microsoft/nni/tree/master/examples/trials/mnist-nested-search-space/sample.json)。 以下 Tuner 支持嵌套搜索空间: * [nested] 搜索空间定义的简单[示例](https://github.com/microsoft/nni/tree/master/examples/trials/mnist-nested-search-space/search_space.json)。 如果选项列表中的元素是 dict,则它是一个子搜索空间,对于内置的 Tuner,必须在此 dict 中添加键 “_name”,这有助于标识选中的元素。 相应的,这是使用从 NNI 获得的嵌套搜索空间的[示例](https://github.com/microsoft/nni/tree/master/examples/trials/mnist-nested-search-space/sample.json)。 以下 Tuner 支持嵌套搜索空间:
* Random Search(随机搜索) * Random Search(随机搜索)
* TPE * TPE
* Anneal(退火算法) * Anneal(退火算法)
* Evolution * Evolution
* {"_type":"randint","_value":[upper]} * {"_type":"randint","_value":[lower, upper]}
* 此变量为范围 [0, upper) 之间的随机整数。 这种分布的语义,在较远整数与附近整数之间的损失函数无太大关系, 这是用来描述随机种子的较好分布。 如果损失函数与较近的整数更相关,则应该使用某个"quantized"的连续分布,如quniform, qloguniform, qnormal 或 qlognormal。 注意,如果需要改动数字下限,可以使用 `quniform` * 当前实现的是 "quniform" 的 "randint" 分布,随机变量的分布函数是 round(uniform(lower, upper))。 所选择值的类型是 float。 如果要使用整数,需要显式转换
* {"_type":"uniform","_value":[low, high]} * {"_type":"uniform","_value":[low, high]}
...@@ -92,9 +92,19 @@ ...@@ -92,9 +92,19 @@
| Hyperband Advisor | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | | Hyperband Advisor | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
| Metis Tuner | ✓ | ✓ | ✓ | ✓ | | | | | | | | Metis Tuner | ✓ | ✓ | ✓ | ✓ | | | | | | |
注意,在 Grid Search Tuner 中,为了使用方便 `quniform``qloguniform` 的定义也有所改变,其中的 q 表示采样值的数量。 详情如下 已知的局限
* 类型 'quniform' 接收三个值 [low, high, q], 其中 [low, high] 指定了范围,而 'q' 指定了会被均匀采样的值的数量。 注意 q 至少为 2。 它的第一个采样值为 'low',每个采样值都会比前一个大 (high-low)/q 。 * 注意,在 Grid Search Tuner 中,为了使用方便 `quniform``qloguniform` 的定义也有所改变,其中的 q 表示采样值的数量。 详情如下:
* 类型 'qloguniform' 的行为与 'quniform' 类似,不同处在于首先将范围改为 [log(low), log(high)] 采样后,再将数值还原。
* 类型 'quniform' 接收三个值 [low, high, q], 其中 [low, high] 指定了范围,而 'q' 指定了会被均匀采样的值的数量。 注意 q 至少为 2。 它的第一个采样值为 'low',每个采样值都会比前一个大 (high-low)/q 。
* 类型 'qloguniform' 的行为与 'quniform' 类似,不同处在于首先将范围改为 [log(low), log(high)] 采样后,再将数值还原。
* 注意 Metis Tuner 当前仅支持在 `choice` 中使用数值。
注意 Metis Tuner 当前仅支持在 `choice` 中使用数值。 * 请注意,对于嵌套搜索空间:
\ No newline at end of file
* 只有 随机搜索/TPE/Anneal/Evolution Tuner 支持嵌套搜索空间
* 不支持嵌套搜索空间 "超参" 并行图,对其的改进通过 #1110(https://github.com/microsoft/nni/issues/1110) 来跟踪 。欢迎任何建议和贡献。
\ No newline at end of file
**在 NNI 中运行神经网络架构搜索**
===
参考 [NNI-NAS-Example](https://github.com/Crysple/NNI-NAS-Example),来使用贡献者提供的 NAS 接口。
谢谢可爱的贡献者!
欢迎越来越多的人加入我们!
\ No newline at end of file
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
6. ADD-SKIP (在随机层之间一致). 6. ADD-SKIP (在随机层之间一致).
7. REMOVE-SKIP (移除随机跳过). 7. REMOVE-SKIP (移除随机跳过).
![ga-squad-logo](../../../../examples/trials/ga_squad/ga_squad.png) ![ga-squad-logo](./ga_squad.png)
## 新版本 ## 新版本
......
...@@ -79,9 +79,7 @@ def get_id(word_dict, word): ...@@ -79,9 +79,7 @@ def get_id(word_dict, word):
''' '''
Return word id. Return word id.
''' '''
if word in word_dict.keys(): return word_dict.get(word, word_dict['<unk>'])
return word_dict[word]
return word_dict['<unk>']
def load_embedding(path): def load_embedding(path):
......
authorName: default
experimentName: example_mnist
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
#choice: true, false
useAnnotation: true
tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner
#SMAC (SMAC should be installed through nnictl)
#codeDir: ~/nni/nni/examples/tuners/random_nas_tuner
codeDir: ../../tuners/random_nas_tuner
classFileName: random_nas_tuner.py
className: RandomNASTuner
trial:
command: python3 mnist.py
codeDir: .
gpuNum: 0
"""A deep MNIST classifier using convolutional layers."""
import argparse
import logging
import math
import tempfile
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import operators as op
FLAGS = None
logger = logging.getLogger('mnist_AutoML')
class MnistNetwork(object):
'''
MnistNetwork is for initializing and building basic network for mnist.
'''
def __init__(self,
channel_1_num,
channel_2_num,
conv_size,
hidden_size,
pool_size,
learning_rate,
x_dim=784,
y_dim=10):
self.channel_1_num = channel_1_num
self.channel_2_num = channel_2_num
self.conv_size = conv_size
self.hidden_size = hidden_size
self.pool_size = pool_size
self.learning_rate = learning_rate
self.x_dim = x_dim
self.y_dim = y_dim
self.images = tf.placeholder(tf.float32, [None, self.x_dim], name='input_x')
self.labels = tf.placeholder(tf.float32, [None, self.y_dim], name='input_y')
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
self.train_step = None
self.accuracy = None
def build_network(self):
'''
Building network for mnist, meanwhile specifying its neural architecture search space
'''
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with tf.name_scope('reshape'):
try:
input_dim = int(math.sqrt(self.x_dim))
except:
print(
'input dim cannot be sqrt and reshape. input dim: ' + str(self.x_dim))
logger.debug(
'input dim cannot be sqrt and reshape. input dim: %s', str(self.x_dim))
raise
x_image = tf.reshape(self.images, [-1, input_dim, input_dim, 1])
"""@nni.mutable_layers(
{
layer_choice: [op.conv2d(size=1, in_ch=1, out_ch=self.channel_1_num),
op.conv2d(size=3, in_ch=1, out_ch=self.channel_1_num),
op.twice_conv2d(size=3, in_ch=1, out_ch=self.channel_1_num),
op.twice_conv2d(size=7, in_ch=1, out_ch=self.channel_1_num),
op.dilated_conv(in_ch=1, out_ch=self.channel_1_num),
op.separable_conv(size=3, in_ch=1, out_ch=self.channel_1_num),
op.separable_conv(size=5, in_ch=1, out_ch=self.channel_1_num),
op.separable_conv(size=7, in_ch=1, out_ch=self.channel_1_num)],
fixed_inputs: [x_image],
layer_output: conv1_out
},
{
layer_choice: [op.post_process(ch_size=self.channel_1_num)],
fixed_inputs: [conv1_out],
layer_output: post1_out
},
{
layer_choice: [op.max_pool(size=3),
op.max_pool(size=5),
op.max_pool(size=7),
op.avg_pool(size=3),
op.avg_pool(size=5),
op.avg_pool(size=7)],
fixed_inputs: [post1_out],
layer_output: pool1_out
},
{
layer_choice: [op.conv2d(size=1, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.conv2d(size=3, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.twice_conv2d(size=3, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.twice_conv2d(size=7, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.dilated_conv(in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.separable_conv(size=3, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.separable_conv(size=5, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.separable_conv(size=7, in_ch=self.channel_1_num, out_ch=self.channel_2_num)],
fixed_inputs: [pool1_out],
optional_inputs: [post1_out],
optional_input_size: [0, 1],
layer_output: conv2_out
},
{
layer_choice: [op.post_process(ch_size=self.channel_2_num)],
fixed_inputs: [conv2_out],
layer_output: post2_out
},
{
layer_choice: [op.max_pool(size=3),
op.max_pool(size=5),
op.max_pool(size=7),
op.avg_pool(size=3),
op.avg_pool(size=5),
op.avg_pool(size=7)],
fixed_inputs: [post2_out],
optional_inputs: [post1_out, pool1_out],
optional_input_size: [0, 1],
layer_output: pool2_out
}
)"""
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
last_dim_list = pool2_out.get_shape().as_list()
assert(last_dim_list[1] == last_dim_list[2])
last_dim = last_dim_list[1]
with tf.name_scope('fc1'):
w_fc1 = op.weight_variable(
[last_dim * last_dim * self.channel_2_num, self.hidden_size])
b_fc1 = op.bias_variable([self.hidden_size])
h_pool2_flat = tf.reshape(
pool2_out, [-1, last_dim * last_dim * self.channel_2_num])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of features.
with tf.name_scope('dropout'):
h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)
# Map the 1024 features to 10 classes, one for each digit
with tf.name_scope('fc2'):
w_fc2 = op.weight_variable([self.hidden_size, self.y_dim])
b_fc2 = op.bias_variable([self.y_dim])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=self.labels, logits=y_conv))
with tf.name_scope('adam_optimizer'):
self.train_step = tf.train.AdamOptimizer(
self.learning_rate).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(
tf.argmax(y_conv, 1), tf.argmax(self.labels, 1))
self.accuracy = tf.reduce_mean(
tf.cast(correct_prediction, tf.float32))
def download_mnist_retry(data_dir, max_num_retries=20):
"""Try to download mnist dataset and avoid errors"""
for _ in range(max_num_retries):
try:
return input_data.read_data_sets(data_dir, one_hot=True)
except tf.errors.AlreadyExistsError:
time.sleep(1)
raise Exception("Failed to download MNIST.")
def main(params):
'''
Main function, build mnist network, run and send result to NNI.
'''
# Import data
mnist = download_mnist_retry(params['data_dir'])
print('Mnist download data done.')
logger.debug('Mnist download data done.')
# Create the model
# Build the graph for the deep net
mnist_network = MnistNetwork(channel_1_num=params['channel_1_num'],
channel_2_num=params['channel_2_num'],
conv_size=params['conv_size'],
hidden_size=params['hidden_size'],
pool_size=params['pool_size'],
learning_rate=params['learning_rate'])
mnist_network.build_network()
logger.debug('Mnist build network done.')
# Write log
graph_location = tempfile.mkdtemp()
logger.debug('Saving graph to: %s', graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
test_acc = 0.0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(params['batch_num']):
batch = mnist.train.next_batch(params['batch_size'])
mnist_network.train_step.run(feed_dict={mnist_network.images: batch[0],
mnist_network.labels: batch[1],
mnist_network.keep_prob: 1 - params['dropout_rate']}
)
if i % 100 == 0:
test_acc = mnist_network.accuracy.eval(
feed_dict={mnist_network.images: mnist.test.images,
mnist_network.labels: mnist.test.labels,
mnist_network.keep_prob: 1.0})
"""@nni.report_intermediate_result(test_acc)"""
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
test_acc = mnist_network.accuracy.eval(
feed_dict={mnist_network.images: mnist.test.images,
mnist_network.labels: mnist.test.labels,
mnist_network.keep_prob: 1.0})
"""@nni.report_final_result(test_acc)"""
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')
def get_params():
''' Get parameters from command line '''
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default='/tmp/tensorflow/mnist/input_data', help="data directory")
parser.add_argument("--dropout_rate", type=float, default=0.5, help="dropout rate")
parser.add_argument("--channel_1_num", type=int, default=32)
parser.add_argument("--channel_2_num", type=int, default=64)
parser.add_argument("--conv_size", type=int, default=5)
parser.add_argument("--pool_size", type=int, default=2)
parser.add_argument("--hidden_size", type=int, default=1024)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--batch_num", type=int, default=2000)
parser.add_argument("--batch_size", type=int, default=32)
args, _ = parser.parse_known_args()
return args
if __name__ == '__main__':
try:
params = vars(get_params())
main(params)
except Exception as exception:
logger.exception(exception)
raise
import tensorflow as tf
import math
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def sum_op(inputs):
"""sum_op"""
fixed_input = inputs[0][0]
optional_input = inputs[1][0]
fixed_shape = fixed_input.get_shape().as_list()
optional_shape = optional_input.get_shape().as_list()
assert fixed_shape[1] == fixed_shape[2]
assert optional_shape[1] == optional_shape[2]
pool_size = math.ceil(optional_shape[1] / fixed_shape[1])
pool_out = tf.nn.avg_pool(optional_input, ksize=[1, pool_size, pool_size, 1], strides=[1, pool_size, pool_size, 1], padding='SAME')
conv_matrix = weight_variable([1, 1, optional_shape[3], fixed_shape[3]])
conv_out = tf.nn.conv2d(pool_out, conv_matrix, strides=[1, 1, 1, 1], padding='SAME')
return fixed_input + conv_out
def conv2d(inputs, size=-1, in_ch=-1, out_ch=-1):
"""conv2d returns a 2d convolution layer with full stride."""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size in [1, 3]:
w_matrix = weight_variable([size, size, in_ch, out_ch])
return tf.nn.conv2d(x_input, w_matrix, strides=[1, 1, 1, 1], padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def twice_conv2d(inputs, size=-1, in_ch=-1, out_ch=-1):
"""twice_conv2d"""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size in [3, 7]:
w_matrix1 = weight_variable([1, size, in_ch, int(out_ch/2)])
out = tf.nn.conv2d(x_input, w_matrix1, strides=[1, 1, 1, 1], padding='SAME')
w_matrix2 = weight_variable([size, 1, int(out_ch/2), out_ch])
return tf.nn.conv2d(out, w_matrix2, strides=[1, 1, 1, 1], padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def dilated_conv(inputs, size=3, in_ch=-1, out_ch=-1):
"""dilated_conv"""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size == 3:
w_matrix = weight_variable([size, size, in_ch, out_ch])
return tf.nn.atrous_conv2d(x_input, w_matrix, rate=2, padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def separable_conv(inputs, size=-1, in_ch=-1, out_ch=-1):
"""separable_conv"""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size in [3, 5, 7]:
depth_matrix = weight_variable([size, size, in_ch, 1])
point_matrix = weight_variable([1, 1, 1*in_ch, out_ch])
return tf.nn.separable_conv2d(x_input, depth_matrix, point_matrix, strides=[1, 1, 1, 1], padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def avg_pool(inputs, size=-1):
"""avg_pool downsamples a feature map."""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size in [3, 5, 7]:
return tf.nn.avg_pool(x_input, ksize=[1, size, size, 1], strides=[1, size, size, 1], padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def max_pool(inputs, size=-1):
"""max_pool downsamples a feature map."""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size in [3, 5, 7]:
return tf.nn.max_pool(x_input, ksize=[1, size, size, 1], strides=[1, size, size, 1], padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def post_process(inputs, ch_size=-1):
"""post_process"""
x_input = inputs[0][0]
bias_matrix = bias_variable([ch_size])
return tf.nn.relu(x_input + bias_matrix)
**Run Neural Network Architecture Search in NNI** **Run Neural Network Architecture Search in NNI**
=== ===
Now we have an NAS example [NNI-NAS-Example](https://github.com/Crysple/NNI-NAS-Example) run in NNI using NAS interface from our contributors. Now we have an NAS example [NNI-NAS-Example](https://github.com/Crysple/NNI-NAS-Example) run in NNI using NAS interface from our contributors.
Thanks our lovely contributors. Thanks our lovely contributors.
And welcome more and more people to join us! And welcome more and more people to join us!
\ No newline at end of file
...@@ -99,10 +99,10 @@ nnictl create --config config.yml ...@@ -99,10 +99,10 @@ nnictl create --config config.yml
`Fashion-MNIST` 是来自 [Zalando](https://jobs.zalando.com/tech/) 文章的图片 — 有 60,000 个样例的训练集和 10,000 个样例的测试集。 每个样例是 28x28 的灰度图,分为 10 个类别。 由于 MNIST 数据集过于简单,该数据集现在开始被广泛使用,用来替换 MNIST 作为基准数据集。 `Fashion-MNIST` 是来自 [Zalando](https://jobs.zalando.com/tech/) 文章的图片 — 有 60,000 个样例的训练集和 10,000 个样例的测试集。 每个样例是 28x28 的灰度图,分为 10 个类别。 由于 MNIST 数据集过于简单,该数据集现在开始被广泛使用,用来替换 MNIST 作为基准数据集。
这里有两个样例,[FashionMNIST-keras.py](../../../../examples/trials/network_morphism/FashionMNIST/FashionMNIST_keras.py)[FashionMNIST-pytorch.py](../../../../examples/trials/network_morphism/FashionMNIST/FashionMNIST_pytorch.py)。 注意,在 `config.yml` 中,需要为此数据集修改 `input_width` 为 28,以及 `input_channel` 为 1。 这里有两个样例,[FashionMNIST-keras.py](./FashionMNIST/FashionMNIST_keras.py)[FashionMNIST-pytorch.py](./FashionMNIST/FashionMNIST_pytorch.py)。 注意,在 `config.yml` 中,需要为此数据集修改 `input_width` 为 28,以及 `input_channel` 为 1。
### Cifar10 ### Cifar10
`CIFAR-10` 数据集 [Canadian Institute For Advanced Research](https://www.cifar.ca/) 是广泛用于机器学习和视觉算法训练的数据集。 它是机器学习领域最广泛使用的数据集之一。 CIFAR-10 数据集包含了 60,000 张 32x32 的彩色图片,分为 10 类。 `CIFAR-10` 数据集 [Canadian Institute For Advanced Research](https://www.cifar.ca/) 是广泛用于机器学习和视觉算法训练的数据集。 它是机器学习领域最广泛使用的数据集之一。 CIFAR-10 数据集包含了 60,000 张 32x32 的彩色图片,分为 10 类。
这里有两个样例,[cifar10-keras.py](../../../../examples/trials/network_morphism/cifar10/cifar10_keras.py)[cifar10-pytorch.py](../../../../examples/trials/network_morphism/cifar10/cifar10_pytorch.py)。 在 `config.yml` 中,该数据集 `input_width` 的值是 32,并且 `input_channel` 是 3。 这里有两个样例,[cifar10-keras.py](./cifar10/cifar10_keras.py)[cifar10-pytorch.py](./cifar10/cifar10_pytorch.py)。 在 `config.yml` 中,该数据集 `input_width` 的值是 32,并且 `input_channel` 是 3。
\ No newline at end of file \ No newline at end of file
...@@ -241,9 +241,7 @@ def get_id(word_dict, word): ...@@ -241,9 +241,7 @@ def get_id(word_dict, word):
''' '''
Given word, return word id. Given word, return word id.
''' '''
if word in word_dict.keys(): return word_dict.get(word, word_dict['<unk>'])
return word_dict[word]
return word_dict['<unk>']
def get_buckets(min_length, max_length, bucket_count): def get_buckets(min_length, max_length, bucket_count):
......
import numpy as np
from nni.tuner import Tuner
def random_archi_generator(nas_ss, random_state):
'''random
'''
chosen_archi = {}
print("zql: nas search space: ", nas_ss)
for block_name, block in nas_ss.items():
tmp_block = {}
for layer_name, layer in block.items():
tmp_layer = {}
for key, value in layer.items():
if key == 'layer_choice':
index = random_state.randint(len(value))
tmp_layer['chosen_layer'] = value[index]
elif key == 'optional_inputs':
tmp_layer['chosen_inputs'] = []
print("zql: optional_inputs", layer['optional_inputs'])
if layer['optional_inputs']:
if isinstance(layer['optional_input_size'], int):
choice_num = layer['optional_input_size']
else:
choice_range = layer['optional_input_size']
choice_num = random_state.randint(choice_range[0], choice_range[1]+1)
for _ in range(choice_num):
index = random_state.randint(len(layer['optional_inputs']))
tmp_layer['chosen_inputs'].append(layer['optional_inputs'][index])
elif key == 'optional_input_size':
pass
else:
raise ValueError('Unknown field %s in layer %s of block %s' % (key, layer_name, block_name))
tmp_block[layer_name] = tmp_layer
chosen_archi[block_name] = tmp_block
return chosen_archi
class RandomNASTuner(Tuner):
'''RandomNASTuner
'''
def __init__(self):
self.searchspace_json = None
self.random_state = None
def update_search_space(self, search_space):
'''update
'''
self.searchspace_json = search_space
self.random_state = np.random.RandomState()
def generate_parameters(self, parameter_id):
'''generate
'''
return random_archi_generator(self.searchspace_json, self.random_state)
def receive_trial_result(self, parameter_id, parameters, value):
'''receive
'''
pass
...@@ -56,7 +56,8 @@ setup( ...@@ -56,7 +56,8 @@ setup(
'scipy', 'scipy',
'schema', 'schema',
'PythonWebHDFS', 'PythonWebHDFS',
'colorama' 'colorama',
'sklearn'
], ],
entry_points = { entry_points = {
......
...@@ -203,7 +203,7 @@ class NNIRestHandler { ...@@ -203,7 +203,7 @@ class NNIRestHandler {
res.send(); res.send();
} catch (err) { } catch (err) {
// setClusterMetata is a step of initialization, so any exception thrown is a fatal // setClusterMetata is a step of initialization, so any exception thrown is a fatal
this.handle_error(err, res, true); this.handle_error(NNIError.FromError(err), res, true);
} }
}); });
} }
......
...@@ -29,31 +29,18 @@ import { GPUSummary, GPUInfo } from '../common/gpuData'; ...@@ -29,31 +29,18 @@ import { GPUSummary, GPUInfo } from '../common/gpuData';
* Metadata of remote machine for configuration and statuc query * Metadata of remote machine for configuration and statuc query
*/ */
export class RemoteMachineMeta { export class RemoteMachineMeta {
public readonly ip : string; public readonly ip : string = '';
public readonly port : number; public readonly port : number = 22;
public readonly username : string; public readonly username : string = '';
public readonly passwd?: string; public readonly passwd: string = '';
public readonly sshKeyPath?: string; public readonly sshKeyPath?: string;
public readonly passphrase?: string; public readonly passphrase?: string;
public gpuSummary : GPUSummary | undefined; public gpuSummary : GPUSummary | undefined;
public readonly gpuIndices?: string; public readonly gpuIndices?: string;
public readonly maxTrialNumPerGpu?: number; public readonly maxTrialNumPerGpu?: number;
public occupiedGpuIndexMap: Map<number, number>; //TODO: initialize varialbe in constructor
public occupiedGpuIndexMap?: Map<number, number>;
public readonly useActiveGpu?: boolean = false; public readonly useActiveGpu?: boolean = false;
constructor(ip : string, port : number, username : string, passwd : string,
sshKeyPath: string, passphrase : string, gpuIndices?: string, maxTrialNumPerGpu?: number, useActiveGpu?: boolean) {
this.ip = ip;
this.port = port;
this.username = username;
this.passwd = passwd;
this.sshKeyPath = sshKeyPath;
this.passphrase = passphrase;
this.gpuIndices = gpuIndices;
this.maxTrialNumPerGpu = maxTrialNumPerGpu;
this.occupiedGpuIndexMap = new Map<number, number>();
this.useActiveGpu = useActiveGpu;
}
} }
export function parseGpuIndices(gpuIndices?: string): Set<number> | undefined { export function parseGpuIndices(gpuIndices?: string): Set<number> | undefined {
......
...@@ -466,6 +466,7 @@ class RemoteMachineTrainingService implements TrainingService { ...@@ -466,6 +466,7 @@ class RemoteMachineTrainingService implements TrainingService {
let connectedRMNum: number = 0; let connectedRMNum: number = 0;
rmMetaList.forEach(async (rmMeta: RemoteMachineMeta) => { rmMetaList.forEach(async (rmMeta: RemoteMachineMeta) => {
rmMeta.occupiedGpuIndexMap = new Map<number, number>();
let sshClientManager: SSHClientManager = new SSHClientManager([], this.MAX_TRIAL_NUMBER_PER_SSHCONNECTION, rmMeta); let sshClientManager: SSHClientManager = new SSHClientManager([], this.MAX_TRIAL_NUMBER_PER_SSHCONNECTION, rmMeta);
let sshClient: Client = await sshClientManager.getAvailableSSHClient(); let sshClient: Client = await sshClientManager.getAvailableSSHClient();
this.machineSSHClientMap.set(rmMeta, sshClientManager); this.machineSSHClientMap.set(rmMeta, sshClientManager);
......
...@@ -124,7 +124,7 @@ else: ...@@ -124,7 +124,7 @@ else:
funcs_args, funcs_args,
fixed_inputs, fixed_inputs,
optional_inputs, optional_inputs,
optional_input_size=0): optional_input_size):
'''execute the chosen function and inputs. '''execute the chosen function and inputs.
Below is an example of chosen function and inputs: Below is an example of chosen function and inputs:
{ {
...@@ -149,7 +149,7 @@ else: ...@@ -149,7 +149,7 @@ else:
chosen_layer = mutable_block[mutable_layer_id]["chosen_layer"] chosen_layer = mutable_block[mutable_layer_id]["chosen_layer"]
chosen_inputs = mutable_block[mutable_layer_id]["chosen_inputs"] chosen_inputs = mutable_block[mutable_layer_id]["chosen_inputs"]
real_chosen_inputs = [optional_inputs[input_name] for input_name in chosen_inputs] real_chosen_inputs = [optional_inputs[input_name] for input_name in chosen_inputs]
layer_out = funcs[chosen_layer]([fixed_inputs, real_chosen_inputs], *funcs_args[chosen_layer]) layer_out = funcs[chosen_layer]([fixed_inputs, real_chosen_inputs], **funcs_args[chosen_layer])
return layer_out return layer_out
......
...@@ -92,7 +92,7 @@ class SlideBar extends React.Component<{}, SliderState> { ...@@ -92,7 +92,7 @@ class SlideBar extends React.Component<{}, SliderState> {
const aTag = document.createElement('a'); const aTag = document.createElement('a');
const isEdge = navigator.userAgent.indexOf('Edge') !== -1 ? true : false; const isEdge = navigator.userAgent.indexOf('Edge') !== -1 ? true : false;
const file = new Blob([nniLogfile], { type: 'application/json' }); const file = new Blob([nniLogfile], { type: 'application/json' });
aTag.download = 'nnimanagerLog.json'; aTag.download = 'nnimanager.log';
aTag.href = URL.createObjectURL(file); aTag.href = URL.createObjectURL(file);
aTag.click(); aTag.click();
if (!isEdge) { if (!isEdge) {
...@@ -101,7 +101,7 @@ class SlideBar extends React.Component<{}, SliderState> { ...@@ -101,7 +101,7 @@ class SlideBar extends React.Component<{}, SliderState> {
if (navigator.userAgent.indexOf('Firefox') > -1) { if (navigator.userAgent.indexOf('Firefox') > -1) {
const downTag = document.createElement('a'); const downTag = document.createElement('a');
downTag.addEventListener('click', function () { downTag.addEventListener('click', function () {
downTag.download = 'nnimanagerLog.json'; downTag.download = 'nnimanager.log';
downTag.href = URL.createObjectURL(file); downTag.href = URL.createObjectURL(file);
}); });
let eventMouse = document.createEvent('MouseEvents'); let eventMouse = document.createEvent('MouseEvents');
...@@ -122,7 +122,7 @@ class SlideBar extends React.Component<{}, SliderState> { ...@@ -122,7 +122,7 @@ class SlideBar extends React.Component<{}, SliderState> {
const aTag = document.createElement('a'); const aTag = document.createElement('a');
const isEdge = navigator.userAgent.indexOf('Edge') !== -1 ? true : false; const isEdge = navigator.userAgent.indexOf('Edge') !== -1 ? true : false;
const file = new Blob([dispatchLogfile], { type: 'application/json' }); const file = new Blob([dispatchLogfile], { type: 'application/json' });
aTag.download = 'dispatcherLog.json'; aTag.download = 'dispatcher.log';
aTag.href = URL.createObjectURL(file); aTag.href = URL.createObjectURL(file);
aTag.click(); aTag.click();
if (!isEdge) { if (!isEdge) {
...@@ -131,7 +131,7 @@ class SlideBar extends React.Component<{}, SliderState> { ...@@ -131,7 +131,7 @@ class SlideBar extends React.Component<{}, SliderState> {
if (navigator.userAgent.indexOf('Firefox') > -1) { if (navigator.userAgent.indexOf('Firefox') > -1) {
const downTag = document.createElement('a'); const downTag = document.createElement('a');
downTag.addEventListener('click', function () { downTag.addEventListener('click', function () {
downTag.download = 'dispatcherLog.json'; downTag.download = 'dispatcher.log';
downTag.href = URL.createObjectURL(file); downTag.href = URL.createObjectURL(file);
}); });
let eventMouse = document.createEvent('MouseEvents'); let eventMouse = document.createEvent('MouseEvents');
......
...@@ -27,7 +27,6 @@ interface TrialDetailState { ...@@ -27,7 +27,6 @@ interface TrialDetailState {
entriesInSelect: string; entriesInSelect: string;
searchSpace: string; searchSpace: string;
isMultiPhase: boolean; isMultiPhase: boolean;
isTableLoading: boolean;
whichGraph: string; whichGraph: string;
hyperCounts: number; // user click the hyper-parameter counts hyperCounts: number; // user click the hyper-parameter counts
durationCounts: number; durationCounts: number;
...@@ -79,7 +78,6 @@ class TrialsDetail extends React.Component<{}, TrialDetailState> { ...@@ -79,7 +78,6 @@ class TrialsDetail extends React.Component<{}, TrialDetailState> {
whichGraph: '1', whichGraph: '1',
isHasSearch: false, isHasSearch: false,
isMultiPhase: false, isMultiPhase: false,
isTableLoading: false,
hyperCounts: 0, hyperCounts: 0,
durationCounts: 0, durationCounts: 0,
intermediateCounts: 0 intermediateCounts: 0
...@@ -95,9 +93,6 @@ class TrialsDetail extends React.Component<{}, TrialDetailState> { ...@@ -95,9 +93,6 @@ class TrialsDetail extends React.Component<{}, TrialDetailState> {
]) ])
.then(axios.spread((res, res1) => { .then(axios.spread((res, res1) => {
if (res.status === 200 && res1.status === 200) { if (res.status === 200 && res1.status === 200) {
if (this._isMounted === true) {
this.setState(() => ({ isTableLoading: true }));
}
const trialJobs = res.data; const trialJobs = res.data;
const metricSource = res1.data; const metricSource = res1.data;
const trialTable: Array<TableObj> = []; const trialTable: Array<TableObj> = [];
...@@ -187,10 +182,7 @@ class TrialsDetail extends React.Component<{}, TrialDetailState> { ...@@ -187,10 +182,7 @@ class TrialsDetail extends React.Component<{}, TrialDetailState> {
} }
} }
if (this._isMounted) { if (this._isMounted) {
this.setState(() => ({ this.setState(() => ({ tableListSource: trialTable }));
isTableLoading: false,
tableListSource: trialTable
}));
} }
if (entriesInSelect === 'all' && this._isMounted) { if (entriesInSelect === 'all' && this._isMounted) {
this.setState(() => ({ this.setState(() => ({
...@@ -330,7 +322,7 @@ class TrialsDetail extends React.Component<{}, TrialDetailState> { ...@@ -330,7 +322,7 @@ class TrialsDetail extends React.Component<{}, TrialDetailState> {
const { const {
tableListSource, searchResultSource, isHasSearch, isMultiPhase, tableListSource, searchResultSource, isHasSearch, isMultiPhase,
entriesTable, experimentPlatform, searchSpace, experimentLogCollection, entriesTable, experimentPlatform, searchSpace, experimentLogCollection,
whichGraph, isTableLoading whichGraph
} = this.state; } = this.state;
const source = isHasSearch ? searchResultSource : tableListSource; const source = isHasSearch ? searchResultSource : tableListSource;
return ( return (
...@@ -407,7 +399,6 @@ class TrialsDetail extends React.Component<{}, TrialDetailState> { ...@@ -407,7 +399,6 @@ class TrialsDetail extends React.Component<{}, TrialDetailState> {
<TableList <TableList
entries={entriesTable} entries={entriesTable}
tableSource={source} tableSource={source}
isTableLoading={isTableLoading}
isMultiPhase={isMultiPhase} isMultiPhase={isMultiPhase}
platform={experimentPlatform} platform={experimentPlatform}
updateList={this.getDetailSource} updateList={this.getDetailSource}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment