Unverified Commit c785655e authored by SparkSnail's avatar SparkSnail Committed by GitHub
Browse files

Merge pull request #207 from microsoft/master

merge master
parents 9fae194a d6b61e2f
AGPruner:
config:
-
start_epoch: 1
end_epoch: 10
frequency: 1
initial_sparsity: 0.05
final_sparsity: 0.8
op_type: 'default'
from nni.compression.tensorflow import AGP_Pruner
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def weight_variable(shape):
return tf.Variable(tf.truncated_normal(shape, stddev = 0.1))
def bias_variable(shape):
return tf.Variable(tf.constant(0.1, shape = shape))
def conv2d(x_input, w_matrix):
return tf.nn.conv2d(x_input, w_matrix, strides = [ 1, 1, 1, 1 ], padding = 'SAME')
def max_pool(x_input, pool_size):
size = [ 1, pool_size, pool_size, 1 ]
return tf.nn.max_pool(x_input, ksize = size, strides = size, padding = 'SAME')
class Mnist:
def __init__(self):
images = tf.placeholder(tf.float32, [ None, 784 ], name = 'input_x')
labels = tf.placeholder(tf.float32, [ None, 10 ], name = 'input_y')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
self.images = images
self.labels = labels
self.keep_prob = keep_prob
self.train_step = None
self.accuracy = None
self.w1 = None
self.b1 = None
self.fcw1 = None
self.cross = None
with tf.name_scope('reshape'):
x_image = tf.reshape(images, [ -1, 28, 28, 1 ])
with tf.name_scope('conv1'):
w_conv1 = weight_variable([ 5, 5, 1, 32 ])
self.w1 = w_conv1
b_conv1 = bias_variable([ 32 ])
self.b1 = b_conv1
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
with tf.name_scope('pool1'):
h_pool1 = max_pool(h_conv1, 2)
with tf.name_scope('conv2'):
w_conv2 = weight_variable([ 5, 5, 32, 64 ])
b_conv2 = bias_variable([ 64 ])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
with tf.name_scope('pool2'):
h_pool2 = max_pool(h_conv2, 2)
with tf.name_scope('fc1'):
w_fc1 = weight_variable([ 7 * 7 * 64, 1024 ])
self.fcw1 = w_fc1
b_fc1 = bias_variable([ 1024 ])
h_pool2_flat = tf.reshape(h_pool2, [ -1, 7 * 7 * 64 ])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
with tf.name_scope('dropout'):
h_fc1_drop = tf.nn.dropout(h_fc1, 0.5)
with tf.name_scope('fc2'):
w_fc2 = weight_variable([ 1024, 10 ])
b_fc2 = bias_variable([ 10 ])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = labels, logits = y_conv))
self.cross = cross_entropy
with tf.name_scope('adam_optimizer'):
self.train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(labels, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
def main():
tf.set_random_seed(0)
data = input_data.read_data_sets('data', one_hot = True)
model = Mnist()
'''you can change this to SensitivityPruner to implement it
pruner = SensitivityPruner(configure_list)
'''
configure_list = [{
'initial_sparsity': 0,
'final_sparsity': 0.8,
'start_epoch': 1,
'end_epoch': 10,
'frequency': 1,
'op_type': 'default'
}]
pruner = AGP_Pruner(configure_list)
# if you want to load from yaml file
# configure_file = nni.compressors.tf_compressor._nnimc_tf._tf_default_load_configure_file('configure_example.yaml','AGPruner')
# configure_list = configure_file.get('config',[])
# pruner.load_configure(configure_list)
# you can also handle it yourself and input an configure list in json
pruner(tf.get_default_graph())
# you can also use compress(model) or compress_default_graph() for tensorflow compressor
# pruner.compress(tf.get_default_graph())
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for batch_idx in range(2000):
batch = data.train.next_batch(2000)
model.train_step.run(feed_dict = {
model.images: batch[0],
model.labels: batch[1],
model.keep_prob: 0.5
})
if batch_idx % 10 == 0:
test_acc = model.accuracy.eval(feed_dict = {
model.images: data.test.images,
model.labels: data.test.labels,
model.keep_prob: 1.0
})
pruner.update_epoch(batch_idx / 10,sess)
print('test accuracy', test_acc)
test_acc = model.accuracy.eval(feed_dict = {
model.images: data.test.images,
model.labels: data.test.labels,
model.keep_prob: 1.0
})
print('final result is', test_acc)
if __name__ == '__main__':
main()
from nni.compression.tensorflow import QAT_Quantizer
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
def weight_variable(shape):
return tf.Variable(tf.truncated_normal(shape, stddev = 0.1))
def bias_variable(shape):
return tf.Variable(tf.constant(0.1, shape = shape))
def conv2d(x_input, w_matrix):
return tf.nn.conv2d(x_input, w_matrix, strides = [ 1, 1, 1, 1 ], padding = 'SAME')
def max_pool(x_input, pool_size):
size = [ 1, pool_size, pool_size, 1 ]
return tf.nn.max_pool(x_input, ksize = size, strides = size, padding = 'SAME')
class Mnist:
def __init__(self):
images = tf.placeholder(tf.float32, [ None, 784 ], name = 'input_x')
labels = tf.placeholder(tf.float32, [ None, 10 ], name = 'input_y')
keep_prob = tf.placeholder(tf.float32, name='keep_prob')
self.images = images
self.labels = labels
self.keep_prob = keep_prob
self.train_step = None
self.accuracy = None
self.w1 = None
self.b1 = None
self.fcw1 = None
self.cross = None
with tf.name_scope('reshape'):
x_image = tf.reshape(images, [ -1, 28, 28, 1 ])
with tf.name_scope('conv1'):
w_conv1 = weight_variable([ 5, 5, 1, 32 ])
self.w1 = w_conv1
b_conv1 = bias_variable([ 32 ])
self.b1 = b_conv1
h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
with tf.name_scope('pool1'):
h_pool1 = max_pool(h_conv1, 2)
with tf.name_scope('conv2'):
w_conv2 = weight_variable([ 5, 5, 32, 64 ])
b_conv2 = bias_variable([ 64 ])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
with tf.name_scope('pool2'):
h_pool2 = max_pool(h_conv2, 2)
with tf.name_scope('fc1'):
w_fc1 = weight_variable([ 7 * 7 * 64, 1024 ])
self.fcw1 = w_fc1
b_fc1 = bias_variable([ 1024 ])
h_pool2_flat = tf.reshape(h_pool2, [ -1, 7 * 7 * 64 ])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
with tf.name_scope('dropout'):
h_fc1_drop = tf.nn.dropout(h_fc1, 0.5)
with tf.name_scope('fc2'):
w_fc2 = weight_variable([ 1024, 10 ])
b_fc2 = bias_variable([ 10 ])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = labels, logits = y_conv))
self.cross = cross_entropy
with tf.name_scope('adam_optimizer'):
self.train_step = tf.train.AdamOptimizer(0.0001).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(labels, 1))
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
def main():
tf.set_random_seed(0)
data = input_data.read_data_sets('data', one_hot = True)
model = Mnist()
'''you can change this to DoReFaQuantizer to implement it
DoReFaQuantizer(configure_list).compress(tf.get_default_graph())
'''
configure_list = [{'q_bits':8, 'op_type':'default'}]
quantizer = QAT_Quantizer(configure_list)
quantizer(tf.get_default_graph())
# you can also use compress(model) or compress_default_graph()
# method like QATquantizer(q_bits = 8).compress_default_graph()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for batch_idx in range(2000):
batch = data.train.next_batch(2000)
model.train_step.run(feed_dict = {
model.images: batch[0],
model.labels: batch[1],
model.keep_prob: 0.5
})
if batch_idx % 10 == 0:
test_acc = model.accuracy.eval(feed_dict = {
model.images: data.test.images,
model.labels: data.test.labels,
model.keep_prob: 1.0
})
print('test accuracy', test_acc)
test_acc = model.accuracy.eval(feed_dict = {
model.images: data.test.images,
model.labels: data.test.labels,
model.keep_prob: 1.0
})
print('final result is', test_acc)
if __name__ == '__main__':
main()
from nni.compression.torch import AGP_Pruner
import torch
import torch.nn.functional as F
from torchvision import datasets, transforms
class Mnist(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = torch.nn.Conv2d(1, 20, 5, 1)
self.conv2 = torch.nn.Conv2d(20, 50, 5, 1)
self.fc1 = torch.nn.Linear(4 * 4 * 50, 500)
self.fc2 = torch.nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim = 1)
def train(model, device, train_loader, optimizer):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('{:2.0f}% Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction = 'sum').item()
pred = output.argmax(dim = 1, keepdim = True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('Loss: {} Accuracy: {}%)\n'.format(
test_loss, 100 * correct / len(test_loader.dataset)))
def main():
torch.manual_seed(0)
device = torch.device('cpu')
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train = True, download = True, transform = trans),
batch_size = 64, shuffle = True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train = False, transform = trans),
batch_size = 1000, shuffle = True)
model = Mnist()
'''you can change this to SensitivityPruner to implement it
pruner = SensitivityPruner(configure_list)
'''
configure_list = [{
'initial_sparsity': 0,
'final_sparsity': 0.8,
'start_epoch': 1,
'end_epoch': 10,
'frequency': 1,
'op_type': 'default'
}]
pruner = AGP_Pruner(configure_list)
pruner(model)
# you can also use compress(model) method
# like that pruner.compress(model)
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum = 0.5)
for epoch in range(10):
print('# Epoch {} #'.format(epoch))
train(model, device, train_loader, optimizer)
test(model, device, test_loader)
pruner.update_epoch(epoch)
if __name__ == '__main__':
main()
from nni.compression.torch import QAT_Quantizer
import torch
import torch.nn.functional as F
from torchvision import datasets, transforms
class Mnist(torch.nn.Module):
def __init__(self):
super().__init__()
self.conv1 = torch.nn.Conv2d(1, 20, 5, 1)
self.conv2 = torch.nn.Conv2d(20, 50, 5, 1)
self.fc1 = torch.nn.Linear(4 * 4 * 50, 500)
self.fc2 = torch.nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4 * 4 * 50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim = 1)
def train(model, device, train_loader, optimizer):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if batch_idx % 100 == 0:
print('{:2.0f}% Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction = 'sum').item()
pred = output.argmax(dim = 1, keepdim = True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('Loss: {} Accuracy: {}%)\n'.format(
test_loss, 100 * correct / len(test_loader.dataset)))
def main():
torch.manual_seed(0)
device = torch.device('cpu')
trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train = True, download = True, transform = trans),
batch_size = 64, shuffle = True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('data', train = False, transform = trans),
batch_size = 1000, shuffle = True)
model = Mnist()
'''you can change this to DoReFaQuantizer to implement it
DoReFaQuantizer(configure_list).compress(model)
'''
configure_list = [{'q_bits':8, 'op_type':'default'}]
quantizer = QAT_Quantizer(configure_list)
quantizer(model)
# you can also use compress(model) method
# like thaht quantizer.compress(model)
optimizer = torch.optim.SGD(model.parameters(), lr = 0.01, momentum = 0.5)
for epoch in range(10):
print('# Epoch {} #'.format(epoch))
train(model, device, train_loader, optimizer)
test(model, device, test_loader)
if __name__ == '__main__':
main()
authorName: default
experimentName: example_mnist
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
#choice: true, false
useAnnotation: true
tuner:
builtinTunerName: TPE
trial:
command: python3 mnist.py --batch_num 200
codeDir: .
gpuNum: 0
nasMode: classic_mode
authorName: NNI-example
experimentName: example_mnist
trialConcurrency: 1
maxExecDuration: 100h
maxTrialNum: 10000
#choice: local, remote, pai
trainingServicePlatform: local
#choice: true, false
useAnnotation: true
tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner
#SMAC, PPO (SMAC and PPO should be installed through nnictl)
builtinTunerName: PPOTuner
classArgs:
optimize_mode: maximize
trial:
command: python3 mnist.py
codeDir: .
gpuNum: 0
...@@ -5,6 +5,7 @@ This file is a modification of the official pytorch mnist example: ...@@ -5,6 +5,7 @@ This file is a modification of the official pytorch mnist example:
https://github.com/pytorch/examples/blob/master/mnist/main.py https://github.com/pytorch/examples/blob/master/mnist/main.py
""" """
import os
import argparse import argparse
import logging import logging
import nni import nni
...@@ -84,15 +85,18 @@ def main(args): ...@@ -84,15 +85,18 @@ def main(args):
device = torch.device("cuda" if use_cuda else "cpu") device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {} kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
data_dir = os.path.join(args['data_dir'], nni.get_trial_id())
train_loader = torch.utils.data.DataLoader( train_loader = torch.utils.data.DataLoader(
datasets.MNIST(args['data_dir'], train=True, download=True, datasets.MNIST(data_dir, train=True, download=True,
transform=transforms.Compose([ transform=transforms.Compose([
transforms.ToTensor(), transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) transforms.Normalize((0.1307,), (0.3081,))
])), ])),
batch_size=args['batch_size'], shuffle=True, **kwargs) batch_size=args['batch_size'], shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader( test_loader = torch.utils.data.DataLoader(
datasets.MNIST(args['data_dir'], train=False, transform=transforms.Compose([ datasets.MNIST(data_dir, train=False, transform=transforms.Compose([
transforms.ToTensor(), transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)) transforms.Normalize((0.1307,), (0.3081,))
])), ])),
......
...@@ -2,7 +2,14 @@ ...@@ -2,7 +2,14 @@
=== ===
Now we have an NAS example [NNI-NAS-Example](https://github.com/Crysple/NNI-NAS-Example) run in NNI using NAS interface from our contributors. Now we have an NAS example [NNI-NAS-Example](https://github.com/Crysple/NNI-NAS-Example) run in NNI using NAS interface from our contributors.
We have included its trial code in this folder, and provided example config files to show how to use PPO tuner to tune the trial code.
> Download data
- `cd data && . download.sh`
- `tar xzf cifar-10-python.tar.gz && mv cifar-batches cifar10`
Thanks our lovely contributors. Thanks our lovely contributors.
And welcome more and more people to join us! And welcome more and more people to join us!
\ No newline at end of file
authorName: Unknown
experimentName: enas_macro
trialConcurrency: 20
maxExecDuration: 2400h
maxTrialNum: 20000
#choice: local, remote
trainingServicePlatform: pai
#choice: true, false
useAnnotation: true
multiPhase: false
versionCheck: false
nniManagerIp: 0.0.0.0
tuner:
builtinTunerName: PPOTuner
classArgs:
optimize_mode: maximize
trials_per_update: 60
epochs_per_update: 20
minibatch_size: 6
trial:
command: sh ./macro_cifar10_pai.sh
codeDir: ./
gpuNum: 1
cpuNum: 1
memoryMB: 8196
image: msranni/nni:latest
virtualCluster: nni
paiConfig:
userName: your_account
passWord: your_pwd
host: 0.0.0.0
authorName: Unknown
experimentName: enas_macro
trialConcurrency: 4
maxExecDuration: 2400h
maxTrialNum: 20000
#choice: local, remote
trainingServicePlatform: local
#choice: true, false
useAnnotation: true
multiPhase: false
tuner:
builtinTunerName: PPOTuner
classArgs:
optimize_mode: maximize
trials_per_update: 60
epochs_per_update: 12
minibatch_size: 10
#could use the No. 0 gpu for this tuner
#if want to specify multiple gpus, here is an example of specifying three gpus: 0,1,2
gpuIndices: 0
trial:
command: sh ./macro_cifar10.sh
codeDir: ./
gpuNum: 1
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
#!/bin/bash
set -e
export PYTHONPATH="$(pwd)"
python3 src/cifar10/nni_child_cifar10.py \
--data_format="NCHW" \
--search_for="macro" \
--reset_output_dir \
--data_path="data/cifar10" \
--output_dir="outputs" \
--train_data_size=45000 \
--batch_size=100 \
--num_epochs=8 \
--log_every=50 \
--eval_every_epochs=1 \
--child_use_aux_heads \
--child_num_layers=12 \
--child_out_filters=36 \
--child_l2_reg=0.0002 \
--child_num_branches=6 \
--child_num_cell_layers=5 \
--child_keep_prob=0.50 \
--child_drop_path_keep_prob=0.60 \
--child_lr_cosine \
--child_lr_max=0.05 \
--child_lr_min=0.001 \
--child_lr_T_0=10 \
--child_lr_T_mul=2 \
--child_mode="subgraph" \
"$@"
#!/bin/bash
set -e
export PYTHONPATH="$(pwd)"
python3 src/cifar10/nni_child_cifar10.py \
--data_format="NCHW" \
--search_for="macro" \
--reset_output_dir \
--data_path="data/cifar10" \
--output_dir="outputs" \
--train_data_size=45000 \
--batch_size=100 \
--num_epochs=30 \
--log_every=50 \
--eval_every_epochs=1 \
--child_use_aux_heads \
--child_num_layers=12 \
--child_out_filters=36 \
--child_l2_reg=0.0002 \
--child_num_branches=6 \
--child_num_cell_layers=5 \
--child_keep_prob=0.50 \
--child_drop_path_keep_prob=0.60 \
--child_lr_cosine \
--child_lr_max=0.05 \
--child_lr_min=0.001 \
--child_lr_T_0=10 \
--child_lr_T_mul=2 \
--child_mode="subgraph" \
"$@"
import os
import sys
import pickle
import numpy as np
import tensorflow as tf
def _read_data(data_path, train_files):
"""Reads CIFAR-10 format data. Always returns NHWC format.
Returns:
images: np tensor of size [N, H, W, C]
labels: np tensor of size [N]
"""
images, labels = [], []
for file_name in train_files:
print(file_name)
full_name = os.path.join(data_path, file_name)
with open(full_name, "rb") as finp:
data = pickle.load(finp, encoding='latin1')
batch_images = data["data"].astype(np.float32) / 255.0
batch_labels = np.array(data["labels"], dtype=np.int32)
images.append(batch_images)
labels.append(batch_labels)
images = np.concatenate(images, axis=0)
labels = np.concatenate(labels, axis=0)
images = np.reshape(images, [-1, 3, 32, 32])
images = np.transpose(images, [0, 2, 3, 1])
return images, labels
def read_data(data_path, num_valids=5000):
print("-" * 80)
print("Reading data")
images, labels = {}, {}
train_files = [
"data_batch_1",
"data_batch_2",
"data_batch_3",
"data_batch_4",
"data_batch_5",
]
test_file = [
"test_batch",
]
images["train"], labels["train"] = _read_data(data_path, train_files)
if num_valids:
images["valid"] = images["train"][-num_valids:]
labels["valid"] = labels["train"][-num_valids:]
images["train"] = images["train"][:-num_valids]
labels["train"] = labels["train"][:-num_valids]
else:
images["valid"], labels["valid"] = None, None
images["test"], labels["test"] = _read_data(data_path, test_file)
print("Prepropcess: [subtract mean], [divide std]")
mean = np.mean(images["train"], axis=(0, 1, 2), keepdims=True)
std = np.std(images["train"], axis=(0, 1, 2), keepdims=True)
print("mean: {}".format(np.reshape(mean * 255.0, [-1])))
print("std: {}".format(np.reshape(std * 255.0, [-1])))
images["train"] = (images["train"] - mean) / std
if num_valids:
images["valid"] = (images["valid"] - mean) / std
images["test"] = (images["test"] - mean) / std
return images, labels
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
from src.common_ops import create_weight, batch_norm, batch_norm_with_mask, global_avg_pool, conv_op, pool_op
from src.utils import count_model_params, get_train_ops, get_C, get_strides
from src.cifar10.models import Model
class GeneralChild(Model):
def __init__(self,
images,
labels,
cutout_size=None,
fixed_arc=None,
out_filters_scale=1,
num_layers=2,
num_branches=6,
out_filters=24,
keep_prob=1.0,
batch_size=32,
clip_mode=None,
grad_bound=None,
l2_reg=1e-4,
lr_init=0.1,
lr_dec_start=0,
lr_dec_every=10000,
lr_dec_rate=0.1,
lr_cosine=False,
lr_max=None,
lr_min=None,
lr_T_0=None,
lr_T_mul=None,
optim_algo=None,
sync_replicas=False,
num_aggregate=None,
num_replicas=None,
data_format="NHWC",
name="child",
mode="subgraph",
*args,
**kwargs
):
super(self.__class__, self).__init__(
images,
labels,
cutout_size=cutout_size,
batch_size=batch_size,
clip_mode=clip_mode,
grad_bound=grad_bound,
l2_reg=l2_reg,
lr_init=lr_init,
lr_dec_start=lr_dec_start,
lr_dec_every=lr_dec_every,
lr_dec_rate=lr_dec_rate,
keep_prob=keep_prob,
optim_algo=optim_algo,
sync_replicas=sync_replicas,
num_aggregate=num_aggregate,
num_replicas=num_replicas,
data_format=data_format,
name=name)
self.lr_cosine = lr_cosine
self.lr_max = lr_max
self.lr_min = lr_min
self.lr_T_0 = lr_T_0
self.lr_T_mul = lr_T_mul
self.out_filters = out_filters * out_filters_scale
self.num_layers = num_layers
self.mode = mode
self.num_branches = num_branches
self.fixed_arc = fixed_arc
self.out_filters_scale = out_filters_scale
pool_distance = self.num_layers // 3
self.pool_layers = [pool_distance - 1, 2 * pool_distance - 1]
def _factorized_reduction(self, x, out_filters, stride, is_training):
"""Reduces the shape of x without information loss due to striding."""
assert out_filters % 2 == 0, (
"Need even number of filters when using this factorized reduction.")
if stride == 1:
with tf.variable_scope("path_conv"):
inp_c = get_C(x, self.data_format)
w = create_weight("w", [1, 1, inp_c, out_filters])
x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
data_format=self.data_format)
x = batch_norm(x, is_training, data_format=self.data_format)
return x
stride_spec = get_strides(stride, self.data_format)
# Skip path 1
path1 = tf.nn.avg_pool(
x, [1, 1, 1, 1], stride_spec, "VALID", data_format=self.data_format)
with tf.variable_scope("path1_conv"):
inp_c = get_C(path1, self.data_format)
w = create_weight("w", [1, 1, inp_c, out_filters // 2])
path1 = tf.nn.conv2d(path1, w, [1, 1, 1, 1], "SAME",
data_format=self.data_format)
# Skip path 2
# First pad with 0"s on the right and bottom, then shift the filter to
# include those 0"s that were added.
if self.data_format == "NHWC":
pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]]
path2 = tf.pad(x, pad_arr)[:, 1:, 1:, :]
concat_axis = 3
else:
pad_arr = [[0, 0], [0, 0], [0, 1], [0, 1]]
path2 = tf.pad(x, pad_arr)[:, :, 1:, 1:]
concat_axis = 1
path2 = tf.nn.avg_pool(
path2, [1, 1, 1, 1], stride_spec, "VALID", data_format=self.data_format)
with tf.variable_scope("path2_conv"):
inp_c = get_C(path2, self.data_format)
w = create_weight("w", [1, 1, inp_c, out_filters // 2])
path2 = tf.nn.conv2d(path2, w, [1, 1, 1, 1], "SAME",
data_format=self.data_format)
# Concat and apply BN
final_path = tf.concat(values=[path1, path2], axis=concat_axis)
final_path = batch_norm(final_path, is_training,
data_format=self.data_format)
return final_path
def _model(self, images, is_training, reuse=False):
'''Build model'''
with tf.variable_scope(self.name, reuse=reuse):
layers = []
out_filters = self.out_filters
with tf.variable_scope("stem_conv"):
w = create_weight("w", [3, 3, 3, out_filters])
x = tf.nn.conv2d(
images, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
x = batch_norm(x, is_training, data_format=self.data_format)
layers.append(x)
def add_fixed_pooling_layer(layer_id, layers, out_filters, is_training):
'''Add a fixed pooling layer every four layers'''
out_filters *= 2
with tf.variable_scope("pool_at_{0}".format(layer_id)):
pooled_layers = []
for i, layer in enumerate(layers):
with tf.variable_scope("from_{0}".format(i)):
x = self._factorized_reduction(
layer, out_filters, 2, is_training)
pooled_layers.append(x)
return pooled_layers, out_filters
def post_process_out(out, optional_inputs):
'''Form skip connection and perform batch norm'''
with tf.variable_scope("skip"):
inputs = layers[-1]
if self.data_format == "NHWC":
inp_h = inputs.get_shape()[1].value
inp_w = inputs.get_shape()[2].value
inp_c = inputs.get_shape()[3].value
out.set_shape([None, inp_h, inp_w, out_filters])
elif self.data_format == "NCHW":
inp_c = inputs.get_shape()[1].value
inp_h = inputs.get_shape()[2].value
inp_w = inputs.get_shape()[3].value
out.set_shape([None, out_filters, inp_h, inp_w])
optional_inputs.append(out)
pout = tf.add_n(optional_inputs)
out = batch_norm(pout, is_training,
data_format=self.data_format)
layers.append(out)
return out
global layer_id
layer_id = -1
def get_layer_id():
global layer_id
layer_id += 1
return 'layer_' + str(layer_id)
def conv3(inputs):
# res_layers is pre_layers that are chosen to form skip connection
# layers[-1] is always the latest input
with tf.variable_scope(get_layer_id()):
with tf.variable_scope('branch_0'):
out = conv_op(
inputs[0][0], 3, is_training, out_filters, out_filters, self.data_format, start_idx=None)
out = post_process_out(out, inputs[1])
return out
def conv3_sep(inputs):
with tf.variable_scope(get_layer_id()):
with tf.variable_scope('branch_1'):
out = conv_op(
inputs[0][0], 3, is_training, out_filters, out_filters, self.data_format, start_idx=None, separable=True)
out = post_process_out(out, inputs[1])
return out
def conv5(inputs):
with tf.variable_scope(get_layer_id()):
with tf.variable_scope('branch_2'):
out = conv_op(
inputs[0][0], 5, is_training, out_filters, out_filters, self.data_format, start_idx=None)
out = post_process_out(out, inputs[1])
return out
def conv5_sep(inputs):
with tf.variable_scope(get_layer_id()):
with tf.variable_scope('branch_3'):
out = conv_op(
inputs[0][0], 5, is_training, out_filters, out_filters, self.data_format, start_idx=None, separable=True)
out = post_process_out(out, inputs[1])
return out
def avg_pool(inputs):
with tf.variable_scope(get_layer_id()):
with tf.variable_scope('branch_4'):
out = pool_op(
inputs[0][0], is_training, out_filters, out_filters, "avg", self.data_format, start_idx=None)
out = post_process_out(out, inputs[1])
return out
def max_pool(inputs):
with tf.variable_scope(get_layer_id()):
with tf.variable_scope('branch_5'):
out = pool_op(
inputs[0][0], is_training, out_filters, out_filters, "max", self.data_format, start_idx=None)
out = post_process_out(out, inputs[1])
return out
"""@nni.mutable_layers(
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs:[x],
layer_output: layer_0_out
},
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs:[layer_0_out],
optional_inputs: [layer_0_out],
optional_input_size: [0, 1],
layer_output: layer_1_out
},
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs:[layer_1_out],
optional_inputs: [layer_0_out, layer_1_out],
optional_input_size: [0, 1],
layer_output: layer_2_out
},
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs:[layer_2_out],
optional_inputs: [layer_0_out, layer_1_out, layer_2_out],
optional_input_size: [0, 1],
layer_output: layer_3_out
}
)"""
layers, out_filters = add_fixed_pooling_layer(
3, layers, out_filters, is_training)
layer_0_out, layer_1_out, layer_2_out, layer_3_out = layers[-4:]
"""@nni.mutable_layers(
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs: [layer_3_out],
optional_inputs: [layer_0_out, layer_1_out, layer_2_out, layer_3_out],
optional_input_size: [0, 1],
layer_output: layer_4_out
},
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs: [layer_4_out],
optional_inputs: [layer_0_out, layer_1_out, layer_2_out, layer_3_out, layer_4_out],
optional_input_size: [0, 1],
layer_output: layer_5_out
},
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs: [layer_5_out],
optional_inputs: [layer_0_out, layer_1_out, layer_2_out, layer_3_out, layer_4_out, layer_5_out],
optional_input_size: [0, 1],
layer_output: layer_6_out
},
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs: [layer_6_out],
optional_inputs: [layer_0_out, layer_1_out, layer_2_out, layer_3_out, layer_4_out, layer_5_out, layer_6_out],
optional_input_size: [0, 1],
layer_output: layer_7_out
}
)"""
layers, out_filters = add_fixed_pooling_layer(
7, layers, out_filters, is_training)
layer_0_out, layer_1_out, layer_2_out, layer_3_out, layer_4_out, layer_5_out, layer_6_out, layer_7_out = layers[
-8:]
"""@nni.mutable_layers(
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs: [layer_7_out],
optional_inputs: [layer_0_out, layer_1_out, layer_2_out, layer_3_out, layer_4_out, layer_5_out, layer_6_out, layer_7_out],
optional_input_size: [0, 1],
layer_output: layer_8_out
},
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs: [layer_8_out],
optional_inputs: [layer_0_out, layer_1_out, layer_2_out, layer_3_out, layer_4_out, layer_5_out, layer_6_out, layer_7_out, layer_8_out],
optional_input_size: [0, 1],
layer_output: layer_9_out
},
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs: [layer_9_out],
optional_inputs: [layer_0_out, layer_1_out, layer_2_out, layer_3_out, layer_4_out, layer_5_out, layer_6_out, layer_7_out, layer_8_out, layer_9_out],
optional_input_size: [0, 1],
layer_output: layer_10_out
},
{
layer_choice: [conv3(), conv3_sep(), conv5(), conv5_sep(), avg_pool(), max_pool()],
fixed_inputs:[layer_10_out],
optional_inputs: [layer_0_out, layer_1_out, layer_2_out, layer_3_out, layer_4_out, layer_5_out, layer_6_out, layer_7_out, layer_8_out, layer_9_out, layer_10_out],
optional_input_size: [0, 1],
layer_output: layer_11_out
}
)"""
x = global_avg_pool(layer_11_out, data_format=self.data_format)
if is_training:
x = tf.nn.dropout(x, self.keep_prob)
with tf.variable_scope("fc"):
if self.data_format == "NHWC":
inp_c = x.get_shape()[3].value
elif self.data_format == "NCHW":
inp_c = x.get_shape()[1].value
else:
raise ValueError(
"Unknown data_format {0}".format(self.data_format))
w = create_weight("w", [inp_c, 10])
x = tf.matmul(x, w)
return x
# override
def _build_train(self):
print("-" * 80)
print("Build train graph")
logits = self._model(self.x_train, is_training=True)
log_probs = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=logits, labels=self.y_train)
self.loss = tf.reduce_mean(log_probs)
self.train_preds = tf.argmax(logits, axis=1)
self.train_preds = tf.to_int32(self.train_preds)
self.train_acc = tf.equal(self.train_preds, self.y_train)
self.train_acc = tf.to_int32(self.train_acc)
self.train_acc = tf.reduce_sum(self.train_acc)
tf_variables = [var
for var in tf.trainable_variables() if var.name.startswith(self.name)]
self.num_vars = count_model_params(tf_variables)
print("Model has {} params".format(self.num_vars))
self.global_step = tf.Variable(
0, dtype=tf.int32, trainable=False, name="global_step")
self.train_op, self.lr, self.grad_norm, self.optimizer = get_train_ops(
self.loss,
tf_variables,
self.global_step,
clip_mode=self.clip_mode,
grad_bound=self.grad_bound,
l2_reg=self.l2_reg,
lr_init=self.lr_init,
lr_dec_start=self.lr_dec_start,
lr_dec_every=self.lr_dec_every,
lr_dec_rate=self.lr_dec_rate,
lr_cosine=self.lr_cosine,
lr_max=self.lr_max,
lr_min=self.lr_min,
lr_T_0=self.lr_T_0,
lr_T_mul=self.lr_T_mul,
num_train_batches=self.num_train_batches,
optim_algo=self.optim_algo,
sync_replicas=False,
num_aggregate=self.num_aggregate,
num_replicas=self.num_replicas)
# override
def _build_valid(self):
if self.x_valid is not None:
print("-" * 80)
print("Build valid graph")
logits = self._model(self.x_valid, False, reuse=True)
self.valid_preds = tf.argmax(logits, axis=1)
self.valid_preds = tf.to_int32(self.valid_preds)
self.valid_acc = tf.equal(self.valid_preds, self.y_valid)
self.valid_acc = tf.to_int32(self.valid_acc)
self.valid_acc = tf.reduce_sum(self.valid_acc)
# override
def _build_test(self):
print("-" * 80)
print("Build test graph")
logits = self._model(self.x_test, False, reuse=True)
self.test_preds = tf.argmax(logits, axis=1)
self.test_preds = tf.to_int32(self.test_preds)
self.test_acc = tf.equal(self.test_preds, self.y_test)
self.test_acc = tf.to_int32(self.test_acc)
self.test_acc = tf.reduce_sum(self.test_acc)
def build_model(self):
self._build_train()
self._build_valid()
self._build_test()
import os
import sys
import numpy as np
import tensorflow as tf
class Model(object):
def __init__(self,
images,
labels,
cutout_size=None,
batch_size=32,
eval_batch_size=100,
clip_mode=None,
grad_bound=None,
l2_reg=1e-4,
lr_init=0.1,
lr_dec_start=0,
lr_dec_every=100,
lr_dec_rate=0.1,
keep_prob=1.0,
optim_algo=None,
sync_replicas=False,
num_aggregate=None,
num_replicas=None,
data_format="NHWC",
name="generic_model",
seed=None,
):
"""
Args:
lr_dec_every: number of epochs to decay
"""
print("-" * 80)
print("Build model {}".format(name))
self.cutout_size = cutout_size
self.batch_size = batch_size
self.eval_batch_size = eval_batch_size
self.clip_mode = clip_mode
self.grad_bound = grad_bound
self.l2_reg = l2_reg
self.lr_init = lr_init
self.lr_dec_start = lr_dec_start
self.lr_dec_rate = lr_dec_rate
self.keep_prob = keep_prob
self.optim_algo = optim_algo
self.sync_replicas = sync_replicas
self.num_aggregate = num_aggregate
self.num_replicas = num_replicas
self.data_format = data_format
self.name = name
self.seed = seed
self.global_step = None
self.valid_acc = None
self.test_acc = None
print("Build data ops")
with tf.device("/cpu:0"):
# training data
self.num_train_examples = np.shape(images["train"])[0]
self.num_train_batches = (
self.num_train_examples + self.batch_size - 1) // self.batch_size
x_train, y_train = tf.train.shuffle_batch(
[images["train"], labels["train"]],
batch_size=self.batch_size,
capacity=50000,
enqueue_many=True,
min_after_dequeue=0,
num_threads=16,
seed=self.seed,
allow_smaller_final_batch=True,
)
self.lr_dec_every = lr_dec_every * self.num_train_batches
def _pre_process(x):
x = tf.pad(x, [[4, 4], [4, 4], [0, 0]])
x = tf.random_crop(x, [32, 32, 3], seed=self.seed)
x = tf.image.random_flip_left_right(x, seed=self.seed)
if self.cutout_size is not None:
mask = tf.ones(
[self.cutout_size, self.cutout_size], dtype=tf.int32)
start = tf.random_uniform(
[2], minval=0, maxval=32, dtype=tf.int32)
mask = tf.pad(mask, [[self.cutout_size + start[0], 32 - start[0]],
[self.cutout_size + start[1], 32 - start[1]]])
mask = mask[self.cutout_size: self.cutout_size + 32,
self.cutout_size: self.cutout_size + 32]
mask = tf.reshape(mask, [32, 32, 1])
mask = tf.tile(mask, [1, 1, 3])
x = tf.where(tf.equal(mask, 0), x=x, y=tf.zeros_like(x))
if self.data_format == "NCHW":
x = tf.transpose(x, [2, 0, 1])
return x
self.x_train = tf.map_fn(_pre_process, x_train, back_prop=False)
self.y_train = y_train
# valid data
self.x_valid, self.y_valid = None, None
if images["valid"] is not None:
images["valid_original"] = np.copy(images["valid"])
labels["valid_original"] = np.copy(labels["valid"])
if self.data_format == "NCHW":
images["valid"] = tf.transpose(
images["valid"], [0, 3, 1, 2])
self.num_valid_examples = np.shape(images["valid"])[0]
self.num_valid_batches = (
(self.num_valid_examples + self.eval_batch_size - 1)
// self.eval_batch_size)
self.x_valid, self.y_valid = tf.train.batch(
[images["valid"], labels["valid"]],
batch_size=self.eval_batch_size,
capacity=5000,
enqueue_many=True,
num_threads=1,
allow_smaller_final_batch=True,
)
# test data
if self.data_format == "NCHW":
images["test"] = tf.transpose(images["test"], [0, 3, 1, 2])
self.num_test_examples = np.shape(images["test"])[0]
self.num_test_batches = (
(self.num_test_examples + self.eval_batch_size - 1)
// self.eval_batch_size)
self.x_test, self.y_test = tf.train.batch(
[images["test"], labels["test"]],
batch_size=self.eval_batch_size,
capacity=10000,
enqueue_many=True,
num_threads=1,
allow_smaller_final_batch=True,
)
# cache images and labels
self.images = images
self.labels = labels
def eval_once(self, sess, eval_set, child_model, verbose=False):
"""Expects self.acc and self.global_step to be defined.
Args:
sess: tf.Session() or one of its wrap arounds.
feed_dict: can be used to give more information to sess.run().
eval_set: "valid" or "test"
"""
assert self.global_step is not None
global_step = sess.run(self.global_step)
print("Eval at {}".format(global_step))
if eval_set == "valid":
assert self.x_valid is not None
assert self.valid_acc is not None
num_examples = self.num_valid_examples
num_batches = self.num_valid_batches
acc_op = self.valid_acc
elif eval_set == "test":
assert self.test_acc is not None
num_examples = self.num_test_examples
num_batches = self.num_test_batches
acc_op = self.test_acc
else:
raise NotImplementedError("Unknown eval_set '{}'".format(eval_set))
total_acc = 0
total_exp = 0
for batch_id in range(num_batches):
acc = sess.run(acc_op)
total_acc += acc
total_exp += self.eval_batch_size
if verbose:
sys.stdout.write(
"\r{:<5d}/{:>5d}".format(total_acc, total_exp))
if verbose:
print("")
print("{}_accuracy: {:<6.4f}".format(
eval_set, float(total_acc) / total_exp))
return float(total_acc) / total_exp
def _model(self, images, is_training, reuse=None):
raise NotImplementedError("Abstract method")
def _build_train(self):
raise NotImplementedError("Abstract method")
def _build_valid(self):
raise NotImplementedError("Abstract method")
def _build_test(self):
raise NotImplementedError("Abstract method")
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import shutil
import logging
import tensorflow as tf
from src.cifar10.data_utils import read_data
from src.cifar10.general_child import GeneralChild
import src.cifar10_flags
from src.cifar10_flags import FLAGS
def build_logger(log_name):
logger = logging.getLogger(log_name)
logger.setLevel(logging.DEBUG)
fh = logging.FileHandler(log_name+'.log')
fh.setLevel(logging.DEBUG)
logger.addHandler(fh)
return logger
logger = build_logger("nni_child_cifar10")
def build_trial(images, labels, ChildClass):
'''Build child class'''
child_model = ChildClass(
images,
labels,
use_aux_heads=FLAGS.child_use_aux_heads,
cutout_size=FLAGS.child_cutout_size,
num_layers=FLAGS.child_num_layers,
num_cells=FLAGS.child_num_cells,
num_branches=FLAGS.child_num_branches,
fixed_arc=FLAGS.child_fixed_arc,
out_filters_scale=FLAGS.child_out_filters_scale,
out_filters=FLAGS.child_out_filters,
keep_prob=FLAGS.child_keep_prob,
drop_path_keep_prob=FLAGS.child_drop_path_keep_prob,
num_epochs=FLAGS.num_epochs,
l2_reg=FLAGS.child_l2_reg,
data_format=FLAGS.data_format,
batch_size=FLAGS.batch_size,
clip_mode="norm",
grad_bound=FLAGS.child_grad_bound,
lr_init=FLAGS.child_lr,
lr_dec_every=FLAGS.child_lr_dec_every,
lr_dec_rate=FLAGS.child_lr_dec_rate,
lr_cosine=FLAGS.child_lr_cosine,
lr_max=FLAGS.child_lr_max,
lr_min=FLAGS.child_lr_min,
lr_T_0=FLAGS.child_lr_T_0,
lr_T_mul=FLAGS.child_lr_T_mul,
optim_algo="momentum",
sync_replicas=FLAGS.child_sync_replicas,
num_aggregate=FLAGS.child_num_aggregate,
num_replicas=FLAGS.child_num_replicas
)
return child_model
def get_child_ops(child_model):
'''Assemble child op to a dict'''
child_ops = {
"global_step": child_model.global_step,
"loss": child_model.loss,
"train_op": child_model.train_op,
"lr": child_model.lr,
"grad_norm": child_model.grad_norm,
"train_acc": child_model.train_acc,
"optimizer": child_model.optimizer,
"num_train_batches": child_model.num_train_batches,
"eval_every": child_model.num_train_batches * FLAGS.eval_every_epochs,
"eval_func": child_model.eval_once,
}
return child_ops
class NASTrial():
def __init__(self):
images, labels = read_data(FLAGS.data_path, num_valids=0)
self.output_dir = os.path.join(os.getenv('NNI_OUTPUT_DIR'), '../..')
self.file_path = os.path.join(
self.output_dir, 'trainable_variable.txt')
self.graph = tf.Graph()
with self.graph.as_default():
self.child_model = build_trial(images, labels, GeneralChild)
self.total_data = {}
self.child_model.build_model()
self.child_ops = get_child_ops(self.child_model)
config = tf.ConfigProto(
intra_op_parallelism_threads=0,
inter_op_parallelism_threads=0,
allow_soft_placement=True)
self.sess = tf.train.SingularMonitoredSession(config=config)
logger.debug('initlize NASTrial done.')
def run_one_step(self):
'''Run this model on a batch of data'''
run_ops = [
self.child_ops["loss"],
self.child_ops["lr"],
self.child_ops["grad_norm"],
self.child_ops["train_acc"],
self.child_ops["train_op"],
]
loss, lr, gn, tr_acc, _ = self.sess.run(run_ops)
global_step = self.sess.run(self.child_ops["global_step"])
log_string = ""
log_string += "ch_step={:<6d}".format(global_step)
log_string += " loss={:<8.6f}".format(loss)
log_string += " lr={:<8.4f}".format(lr)
log_string += " |g|={:<8.4f}".format(gn)
log_string += " tr_acc={:<3d}/{:>3d}".format(tr_acc, FLAGS.batch_size)
if int(global_step) % FLAGS.log_every == 0:
logger.debug(log_string)
return loss, global_step
def run(self):
'''Run this model according to the `epoch` set in FALGS'''
max_acc = 0
while True:
_, global_step = self.run_one_step()
if global_step % self.child_ops['num_train_batches'] == 0:
acc = self.child_ops["eval_func"](
self.sess, "test", self.child_model)
max_acc = max(max_acc, acc)
'''@nni.report_intermediate_result(acc)'''
if global_step / self.child_ops['num_train_batches'] >= FLAGS.num_epochs:
'''@nni.report_final_result(max_acc)'''
break
def main(_):
logger.debug("-" * 80)
if not os.path.isdir(FLAGS.output_dir):
logger.debug(
"Path {} does not exist. Creating.".format(FLAGS.output_dir))
os.makedirs(FLAGS.output_dir)
elif FLAGS.reset_output_dir:
logger.debug(
"Path {} exists. Remove and remake.".format(FLAGS.output_dir))
shutil.rmtree(FLAGS.output_dir)
os.makedirs(FLAGS.output_dir)
logger.debug("-" * 80)
trial = NASTrial()
trial.run()
if __name__ == "__main__":
tf.app.run()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment