Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nni
Commits
c6c361d8
Unverified
Commit
c6c361d8
authored
Mar 21, 2022
by
QuanluZhang
Committed by
GitHub
Mar 21, 2022
Browse files
[doc] misc refactor (#4638)
parent
f355b956
Changes
31
Show whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
25 additions
and
1 deletion
+25
-1
docs/source/misc/nni_colab_support.rst
docs/source/misc/nni_colab_support.rst
+0
-0
docs/source/misc/op_evo_examples.rst
docs/source/misc/op_evo_examples.rst
+0
-0
docs/source/misc/parallelizing_tpe_search.rst
docs/source/misc/parallelizing_tpe_search.rst
+0
-0
docs/source/misc/perf_compare.rst
docs/source/misc/perf_compare.rst
+11
-0
docs/source/misc/perf_compare_zh.rst
docs/source/misc/perf_compare_zh.rst
+13
-0
docs/source/misc/recommenders_svd.rst
docs/source/misc/recommenders_svd.rst
+0
-0
docs/source/misc/research_publications.rst
docs/source/misc/research_publications.rst
+0
-0
docs/source/misc/rocksdb_examples.rst
docs/source/misc/rocksdb_examples.rst
+0
-0
docs/source/misc/sptag_auto_tune.rst
docs/source/misc/sptag_auto_tune.rst
+0
-0
docs/source/misc/squad_evolution_examples.rst
docs/source/misc/squad_evolution_examples.rst
+0
-0
nni/algorithms/hpo/tpe_tuner.py
nni/algorithms/hpo/tpe_tuner.py
+1
-1
No files found.
docs/source/
CommunitySharings/NNI
_colab_support.rst
→
docs/source/
misc/nni
_colab_support.rst
View file @
c6c361d8
File moved
docs/source/
TrialExample/OpEvoE
xamples.rst
→
docs/source/
misc/op_evo_e
xamples.rst
View file @
c6c361d8
File moved
docs/source/
CommunitySharings/P
arallelizing
TpeS
earch.rst
→
docs/source/
misc/p
arallelizing
_tpe_s
earch.rst
View file @
c6c361d8
File moved
docs/source/
CommunitySharings
/perf_compare.rst
→
docs/source/
misc
/perf_compare.rst
View file @
c6c361d8
################################################
Performance Measurement, Comparison and Analysis
################################################
================================================
Performance comparison and analysis can help users decide a proper algorithm (e.g., tuner, NAS algorithm) for their scenario. The following are some measurement and comparison data for users' reference.
.. toctree::
:maxdepth: 1
Neural Architecture Search Comparison <NasComparison>
Hyper-parameter Tuning Algorithm Comparsion <HpoComparison>
Model Compression Algorithm Comparsion <ModelCompressionComparison>
\ No newline at end of file
Neural Architecture Search Comparison <nas_comparison>
Hyper-parameter Tuning Algorithm Comparsion <hpo_comparison>
Model Compression Algorithm Comparsion <model_compress_comp>
\ No newline at end of file
docs/source/
CommunitySharings
/perf_compare_zh.rst
→
docs/source/
misc
/perf_compare_zh.rst
View file @
c6c361d8
..
7d625bd21018f53834e9db08a619c494
..
8f6869e44d85db2e2a969194c1828580
################################################
性能测量,比较和分析
################################################
====================
性能比较和分析可以帮助用户在他们的场景中选择适合的算法(例如 Tuner,NAS 算法)。 以下是一些供用户参考的测量和比较数据。
.. toctree::
:maxdepth: 1
神经网络结构搜索(NAS)的对比<NasComparison>
超参调优算法的对比<HpoComparison>
模型压缩算法的对比<ModelCompressionComparison>
\ No newline at end of file
神经网络结构搜索(NAS)的对比<nas_comparison>
超参调优算法的对比<hpo_comparison>
模型压缩算法的对比<model_compress_comp>
\ No newline at end of file
docs/source/
CommunitySharings/R
ecommenders
S
vd.rst
→
docs/source/
misc/r
ecommenders
_s
vd.rst
View file @
c6c361d8
File moved
docs/source/
R
esearch
P
ublications.rst
→
docs/source/
misc/r
esearch
_p
ublications.rst
View file @
c6c361d8
File moved
docs/source/
TrialExample/R
ocksdb
E
xamples.rst
→
docs/source/
misc/r
ocksdb
_e
xamples.rst
View file @
c6c361d8
File moved
docs/source/
CommunitySharings/S
ptag
A
uto
T
une.rst
→
docs/source/
misc/s
ptag
_a
uto
_t
une.rst
View file @
c6c361d8
File moved
docs/source/
TrialExample/S
quad
E
volution
E
xamples.rst
→
docs/source/
misc/s
quad
_e
volution
_e
xamples.rst
View file @
c6c361d8
File moved
nni/algorithms/hpo/tpe_tuner.py
View file @
c6c361d8
...
...
@@ -49,7 +49,7 @@ class TpeArguments(NamedTuple):
How each liar works is explained in paper's section 6.1.
In general "best" suit for small trial number and "worst" suit for large trial number.
(:doc:`experiment result </
CommunitySharings/P
arallelizing
TpeS
earch>`)
(:doc:`experiment result </
misc/p
arallelizing
_tpe_s
earch>`)
n_startup_jobs
The first N hyperparameters are generated fully randomly for warming up.
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment