Unverified Commit c6c361d8 authored by QuanluZhang's avatar QuanluZhang Committed by GitHub
Browse files

[doc] misc refactor (#4638)

parent f355b956
################################################
Performance Measurement, Comparison and Analysis Performance Measurement, Comparison and Analysis
################################################ ================================================
Performance comparison and analysis can help users decide a proper algorithm (e.g., tuner, NAS algorithm) for their scenario. The following are some measurement and comparison data for users' reference. Performance comparison and analysis can help users decide a proper algorithm (e.g., tuner, NAS algorithm) for their scenario. The following are some measurement and comparison data for users' reference.
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
Neural Architecture Search Comparison <NasComparison> Neural Architecture Search Comparison <nas_comparison>
Hyper-parameter Tuning Algorithm Comparsion <HpoComparison> Hyper-parameter Tuning Algorithm Comparsion <hpo_comparison>
Model Compression Algorithm Comparsion <ModelCompressionComparison> Model Compression Algorithm Comparsion <model_compress_comp>
\ No newline at end of file \ No newline at end of file
.. 7d625bd21018f53834e9db08a619c494 .. 8f6869e44d85db2e2a969194c1828580
################################################
性能测量,比较和分析 性能测量,比较和分析
################################################ ====================
性能比较和分析可以帮助用户在他们的场景中选择适合的算法(例如 Tuner,NAS 算法)。 以下是一些供用户参考的测量和比较数据。 性能比较和分析可以帮助用户在他们的场景中选择适合的算法(例如 Tuner,NAS 算法)。 以下是一些供用户参考的测量和比较数据。
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
神经网络结构搜索(NAS)的对比<NasComparison> 神经网络结构搜索(NAS)的对比<nas_comparison>
超参调优算法的对比<HpoComparison> 超参调优算法的对比<hpo_comparison>
模型压缩算法的对比<ModelCompressionComparison> 模型压缩算法的对比<model_compress_comp>
\ No newline at end of file \ No newline at end of file
...@@ -49,7 +49,7 @@ class TpeArguments(NamedTuple): ...@@ -49,7 +49,7 @@ class TpeArguments(NamedTuple):
How each liar works is explained in paper's section 6.1. How each liar works is explained in paper's section 6.1.
In general "best" suit for small trial number and "worst" suit for large trial number. In general "best" suit for small trial number and "worst" suit for large trial number.
(:doc:`experiment result </CommunitySharings/ParallelizingTpeSearch>`) (:doc:`experiment result </misc/parallelizing_tpe_search>`)
n_startup_jobs n_startup_jobs
The first N hyperparameters are generated fully randomly for warming up. The first N hyperparameters are generated fully randomly for warming up.
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment