我们很高兴的宣布,基于 NNI 的模型压缩工具发布了。该版本仍处于试验阶段,会根据用户反馈进行改进。 诚挚邀请您使用、反馈,或有更多贡献。
NNI 提供了易于使用的工具包来帮助用户设计并使用压缩算法。 当前支持基于 PyTorch 的统一接口。 只需要添加几行代码即可压缩模型。 NNI 中也内置了一些流程的模型压缩算法。 用户还可以通过 NNI 强大的自动调参功能来找到最好的压缩后的模型,详见[自动模型压缩](./AutoCompression.md)。 另外,用户还能使用 NNI 的接口,轻松定制新的压缩算法,详见[教程](#customize-new-compression-algorithms)。 关于模型压缩框架如何工作的详情可参考[这里](./Framework.md)。
模型压缩方面的综述可参考:[Recent Advances in Efficient Computation of Deep Convolutional Neural Networks](https://arxiv.org/pdf/1802.00939.pdf)。
| [FPGM Pruner](./Pruner.md#fpgm-pruner) | Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration [参考论文](https://arxiv.org/pdf/1811.00250.pdf) |
| [FPGM Pruner](https://nni.readthedocs.io/zh/latest/Compressor/Pruner.html#fpgm-pruner) | Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration [参考论文](https://arxiv.org/pdf/1811.00250.pdf) |
有时,给定的目标压缩率很难通过一次压缩就得到最好的结果。 自动模型压缩算法,通常需要通过对不同层采用不同的稀疏度来探索可压缩的空间。 NNI 提供了这样的算法,来帮助用户在模型中为每一层指定压缩度。 此外,还可利用 NNI 的自动调参功能来自动的压缩模型。 详细文档参考[这里](./AutoCompression.md)。
"""
Can do some processing based on the model or weights binded
*[Taylor FO On Weight Pruner](#taylorfoweightfilterpruner)
## Level Pruner
## Level Pruner
...
@@ -45,105 +54,6 @@ pruner.compress()
...
@@ -45,105 +54,6 @@ pruner.compress()
***
***
## AGP Pruner
这是一种迭代的 Pruner,在 [To prune, or not to prune: exploring the efficacy of pruning for model compression](https://arxiv.org/abs/1710.01878)中,作者 Michael Zhu 和 Suyog Gupta 提出了一种逐渐修建权重的算法。
这是一种一次性的 Pruner,FPGM Pruner 是论文 [Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration](https://arxiv.org/pdf/1811.00250.pdf) 的实现
这是一种一次性的 Pruner,FPGM Pruner 是论文 [Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration](https://arxiv.org/pdf/1811.00250.pdf) 的实现
具有最小几何中位数的 FPGMPruner 修剪过滤器
具有最小几何中位数的 FPGMPruner 修剪滤波器


> 以前的方法使用 “smaller-norm-less-important” 准则来修剪卷积神经网络中规范值较小的。 本文中,分析了基于规范的准则,并指出其所依赖的两个条件不能总是满足:(1) 过滤器的规范偏差应该较大;(2) 过滤器的最小规范化值应该很小。 为了解决此问题,提出了新的过滤器修建方法,即 Filter Pruning via Geometric Median (FPGM),可不考虑这两个要求来压缩模型。 与以前的方法不同,FPGM 通过修剪冗余的,而不是相关性更小的部分来压缩 CNN 模型。
> 以前的方法使用 “smaller-norm-less-important” 准则来修剪卷积神经网络中规范值较小的。 本文中,分析了基于规范的准则,并指出其所依赖的两个条件不能总是满足:(1) 滤波器的规范偏差应该较大;(2) 滤波器的最小规范化值应该很小。 为了解决此问题,提出了新的滤波器修剪方法,即 Filter Pruning via Geometric Median (FPGM),可不考虑这两个要求来压缩模型。 与以前的方法不同,FPGM 通过修剪冗余的,而不是相关性更小的部分来压缩 CNN 模型。
这是一种一次性的 Pruner,由 ['PRUNING FILTERS FOR EFFICIENT CONVNETS'](https://arxiv.org/abs/1608.08710) 提出,作者 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet 和 Hans Peter Graf。[重现的实验结果](l1filterpruner.md)
这是一种一次性的 Pruner,由 ['PRUNING FILTERS FOR EFFICIENT CONVNETS'](https://arxiv.org/abs/1608.08710) 提出,作者 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet 和 Hans Peter Graf。
这是一种迭代的 Pruner,在 [To prune, or not to prune: exploring the efficacy of pruning for model compression](https://arxiv.org/abs/1710.01878)中,作者 Michael Zhu 和 Suyog Gupta 提出了一种逐渐修建权重的算法。
我们实现了 [Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1](https://arxiv.org/abs/1602.02830) 中的一个实验,对 CIFAR-10 上的 **VGGNet** 进行了量化操作。 我们的实验结果如下:
我们实现了 [Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1](https://arxiv.org/abs/1602.02830) 中的一个实验,对 CIFAR-10 上的 **VGGNet** 进行了量化操作。 实验结果如下:
NNI 会将不同配置的结果存到单个数据库中,而不是单独的文件中,以便从各个维度进行比较。 在实现上,`model_family` 用来保存模型类型,`model_spec` 用来保存构建模型所需的参数,在使用 NAS 时,`cell_spec` 保存运算符和连接的详细信息,`generator` 表示配置生成的采样策略。 详情可参考 API 文档。
此外,可以使用 NAS 可视化来显示 One-Shot NAS。 [了解详情](./Visualization.md)。
### 分布式 NAS
神经网络架构搜索通过在 Trial 任务中独立运行单个子模型来实现。 NNI 同样支持这种搜索方法,其天然适用于 NNI 的超参搜索框架。Tuner 为每个 Trial 生成子模型,并在训练平台上运行。
要使用此模式,不需要修改 NNI NAS API 的搜索空间定义 (即, `LayerChoice`, `InputChoice`, `MutableScope`)。 模型初始化后,在模型上调用 `get_and_apply_next_architecture`。 One-shot NAS Trainer 不能在此模式中使用。 简单示例:
```python
model=Net()
# 从 Tuner 中获得选择的架构,并应用到模型上
get_and_apply_next_architecture(model)
train(model)# 训练模型的代码
acc=test(model)# 测试训练好的模型
nni.report_final_result(acc)# 报告所选架构的性能
```
搜索空间应生成,并发送给 Tuner。 与 NNI NAS API 一样,搜索空间嵌入到了用户代码中。 用户可以使用 "[nnictl ss_gen](../Tutorial/Nnictl.md)" 以生成搜索空间文件。 然后,将生成的搜索空间文件路径填入 `config.yml` 的 `searchSpacePath`。 `config.yml` 中的其它字段参考[教程](../Tutorial/QuickStart.md)。
可使用 [NNI Tuner](../Tuner/BuiltinTuner.md) 来搜索。 目前,只有 PPO Tuner 支持 NAS 搜索空间。
**注意**,在使用 One-Shot NAS 算法时,不需要启动 NNI Experiment。 不需要 `nnictl`,可直接运行 Python 脚本(即:`train.py`),如:`python3 train.py`。 训练完成后,可通过 `trainer.export()` 导出找到的最好的模型。
| [P-DARTS](PDARTS.md) | [Progressive Differentiable Architecture Search: Bridging the Depth Gap between Search and Evaluation](https://arxiv.org/abs/1904.12760) 基于DARTS。 它引入了一种有效的算法,可在搜索过程中逐渐增加搜索的深度。 |
| [P-DARTS](https://nni.readthedocs.io/zh/latest/NAS/PDARTS.html) | [Progressive Differentiable Architecture Search: Bridging the Depth Gap between Search and Evaluation](https://arxiv.org/abs/1904.12760) 基于DARTS。 它引入了一种有效的算法,可在搜索过程中逐渐增加搜索的深度。 |
| [ProxylessNAS](Proxylessnas.md) | [ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware](https://arxiv.org/abs/1812.00332). 它删除了代理,直接从大规模目标任务和目标硬件平台进行学习。 |
| [ProxylessNAS](https://nni.readthedocs.io/zh/latest/NAS/Proxylessnas.html) | [ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware](https://arxiv.org/abs/1812.00332). 它删除了代理,直接从大规模目标任务和目标硬件平台进行学习。 |
| [TextNAS](TextNAS.md) | [TextNAS: A Neural Architecture Search Space tailored for Text Representation](https://arxiv.org/pdf/1912.10729.pdf)。 这是专门用于文本表示的神经网络架构搜索算法。 |
| [TextNAS](https://nni.readthedocs.io/zh/latest/NAS/TextNAS.html) | [TextNAS: A Neural Architecture Search Space tailored for Text Representation](https://arxiv.org/pdf/1912.10729.pdf)。 这是专门用于文本表示的神经网络架构搜索算法。 |