Unverified Commit b6988062 authored by J-shang's avatar J-shang Committed by GitHub
Browse files

migrate nnicli (#3334)

parent de7b2685
NNI Client
==========
NNI client is a python API of ``nnictl``, which implements the most commonly used commands. Users can use this API to control their experiments, collect experiment results and conduct advanced analyses based on experiment results in python code directly instead of using command line. Here is an example:
.. code-block:: bash
from nni.experiment import LegacyExperiment
# create an experiment instance
exp = LegacyExperiment()
# start an experiment, then connect the instance to this experiment
# you can also use `resume_experiment`, `view_experiment` or `connect_experiment`
# only one of them should be called in one instance
exp.start_experiment('nni/examples/trials/mnist-pytorch/config.yml', port=9090)
# update the experiment's concurrency
exp.update_concurrency(3)
# get some information about the experiment
print(exp.get_experiment_status())
print(exp.get_job_statistics())
print(exp.list_trial_jobs())
# stop the experiment, then disconnect the instance from the experiment.
exp.stop_experiment()
......@@ -8,5 +8,4 @@ Python API Reference
Auto Tune <autotune_ref>
NAS <NAS/NasReference>
Compression Utilities <Compression/CompressionReference>
NNI Client <nnicli_ref>
\ No newline at end of file
Compression Utilities <Compression/CompressionReference>
\ No newline at end of file
......@@ -3,5 +3,4 @@
from .config import *
from .experiment import Experiment
from .nni_client import *
from .data import *
from dataclasses import dataclass
import json
from typing import List
@dataclass
class TrialResult:
"""
TrialResult stores the result information of a trial job.
Attributes
----------
parameter: dict
Hyper parameters for this trial.
value: serializable object, usually a number, or a dict with key "default" and other extra keys
Final result.
trialJobId: str
Trial job id.
"""
parameter: dict
value: dict
trialJobId: str
def __init__(self, parameter: dict, value: str, trialJobId: str):
self.parameter = parameter
self.value = json.loads(value)
self.trialJobId = trialJobId
@dataclass
class TrialMetricData:
"""
TrialMetricData stores the metric data of a trial job.
A trial job may have both intermediate metric and final metric.
Attributes
----------
timestamp: int
Time stamp.
trialJobId: str
Trial job id.
parameterId: int
Parameter id.
type: str
Metric type, `PERIODICAL` for intermediate result and `FINAL` for final result.
sequence: int
Sequence number in this trial.
data: serializable object, usually a number, or a dict with key "default" and other extra keys
Metric data.
"""
timestamp: int
trialJobId: str
parameterId: int
type: str
sequence: int
data: dict
def __init__(self, timestamp: int, trialJobId: str, parameterId: int, type: str, sequence: int, data: str): # pylint: disable=W0622
self.timestamp = timestamp
self.trialJobId = trialJobId
self.parameterId = parameterId
self.type = type
self.sequence = sequence
self.data = json.loads(json.loads(data))
@dataclass
class TrialHyperParameters:
"""
TrialHyperParameters stores the hyper parameters of a trial job.
Attributes
----------
parameter_id: int
Parameter id.
parameter_source: str
Parameter source.
parameters: dict
Hyper parameters.
parameter_index: int
Parameter index.
"""
parameter_id: int
parameter_source: str
parameters: dict
parameter_index: int
@dataclass
class TrialJob:
"""
TrialJob stores the information of a trial job.
Attributes
----------
trialJobId: str
Trial job id.
status: str
Job status.
hyperParameters: list of `nni.experiment.TrialHyperParameters`
See `nni.experiment.TrialHyperParameters`.
logPath: str
Log path.
startTime: int
Job start time (timestamp).
endTime: int
Job end time (timestamp).
finalMetricData: list of `nni.experiment.TrialMetricData`
See `nni.experiment.TrialMetricData`.
stderrPath: str
Stderr log path.
sequenceId: int
Sequence Id.
"""
trialJobId: str
status: str
hyperParameters: List[TrialHyperParameters]
logPath: str
startTime: int
endTime: int
finalMetricData: List[TrialMetricData]
stderrPath: str
sequenceId: int
def __init__(self, trialJobId: str, status: str, logPath: str, startTime: int, sequenceId: int,
endTime: int = -1, stderrPath: str = '', hyperParameters: List = [], finalMetricData: List = []):
self.trialJobId = trialJobId
self.status = status
self.hyperParameters = [TrialHyperParameters(**json.loads(e)) for e in hyperParameters]
self.logPath = logPath
self.startTime = startTime
self.endTime = endTime
self.finalMetricData = [TrialMetricData(**e) for e in finalMetricData]
self.stderrPath = stderrPath
self.sequenceId = sequenceId
......@@ -5,7 +5,7 @@ import socket
from subprocess import Popen
from threading import Thread
import time
from typing import Optional, Union, List, overload
from typing import Optional, Union, List, overload, Any
import colorama
import psutil
......@@ -15,6 +15,7 @@ from nni.runtime.msg_dispatcher import MsgDispatcher
from nni.tuner import Tuner
from .config import ExperimentConfig
from .data import TrialJob, TrialMetricData, TrialResult
from . import launcher
from . import management
from .pipe import Pipe
......@@ -76,24 +77,37 @@ class Experiment:
"""
...
def __init__(self, tuner: Tuner, config=None, training_service=None):
self.config: ExperimentConfig
@overload
def __init__(self) -> None:
"""
Prepare an empty experiment, for `connect_experiment`.
Use `Experiment.connect_experiment` to manage experiment.
"""
...
def __init__(self, tuner=None, config=None, training_service=None):
self.config: Optional[ExperimentConfig] = None
self.id: Optional[str] = None
self.port: Optional[int] = None
self.tuner: Tuner = tuner
self.tuner: Optional[Tuner] = None
self._proc: Optional[Popen] = None
self._pipe: Optional[Pipe] = None
self._dispatcher: Optional[MsgDispatcher] = None
self._dispatcher_thread: Optional[Thread] = None
if isinstance(config, (str, list)):
config, training_service = None, config
if isinstance(tuner, Tuner):
self.tuner = tuner
if isinstance(config, (str, list)):
config, training_service = None, config
if config is None:
self.config = ExperimentConfig(training_service)
if config is None:
self.config = ExperimentConfig(training_service)
else:
self.config = config
else:
self.config = config
_logger.warning('Tuner not set, wait for connect...')
def start(self, port: int = 8080, debug: bool = False) -> None:
"""
......@@ -143,7 +157,6 @@ class Experiment:
def _create_dispatcher(self): # overrided by retiarii, temporary solution
return MsgDispatcher(self.tuner, None)
def stop(self) -> None:
"""
Stop background experiment.
......@@ -169,7 +182,6 @@ class Experiment:
self._dispatcher_thread = None
_logger.info('Experiment stopped')
def run(self, port: int = 8080, debug: bool = False) -> bool:
"""
Run the experiment.
......@@ -192,9 +204,198 @@ class Experiment:
finally:
self.stop()
def connect_experiment(self, port: int):
"""
Connect to an existing experiment.
def get_status(self) -> str:
Parameters
----------
port
The port of web UI.
"""
self.port = port
self.get_status()
def _experiment_rest_get(self, port: int, api: str) -> Any:
if self.port is None:
raise RuntimeError('Experiment is not running')
resp = rest.get(self.port, '/check-status')
return rest.get(self.port, api)
def _experiment_rest_put(self, port: int, api: str, data: Any):
if self.port is None:
raise RuntimeError('Experiment is not running')
rest.put(self.port, api, data)
def get_status(self) -> str:
"""
Return experiment status as a str.
Returns
-------
str
Experiment status.
"""
resp = self._experiment_rest_get(self.port, '/check-status')
return resp['status']
def get_trial_job(self, trial_job_id: str):
"""
Return a trial job.
Parameters
----------
trial_job_id: str
Trial job id.
Returns
----------
TrialJob
A `TrialJob` instance corresponding to `trial_job_id`.
"""
resp = self._experiment_rest_get(self.port, '/trial-jobs/{}'.format(trial_job_id))
return TrialJob(**resp)
def list_trial_jobs(self):
"""
Return information for all trial jobs as a list.
Returns
----------
list
List of `TrialJob`.
"""
resp = self._experiment_rest_get(self.port, '/trial-jobs')
return [TrialJob(**trial_job) for trial_job in resp]
def get_job_statistics(self):
"""
Return trial job statistics information as a dict.
Returns
----------
dict
Job statistics information.
"""
resp = self._experiment_rest_get(self.port, '/job-statistics')
return resp
def get_job_metrics(self, trial_job_id=None):
"""
Return trial job metrics.
Parameters
----------
trial_job_id: str
trial job id. if this parameter is None, all trail jobs' metrics will be returned.
Returns
----------
dict
Each key is a trialJobId, the corresponding value is a list of `TrialMetricData`.
"""
api = '/metric-data/{}'.format(trial_job_id) if trial_job_id else '/metric-data'
resp = self._experiment_rest_get(self.port, api)
metric_dict = {}
for metric in resp:
trial_id = metric["trialJobId"]
if trial_id not in metric_dict:
metric_dict[trial_id] = [TrialMetricData(**metric)]
else:
metric_dict[trial_id].append(TrialMetricData(**metric))
return metric_dict
def get_experiment_profile(self):
"""
Return experiment profile as a dict.
Returns
----------
dict
The profile of the experiment.
"""
resp = self._experiment_rest_get(self.port, '/experiment')
return resp
def export_data(self):
"""
Return exported information for all trial jobs.
Returns
----------
list
List of `TrialResult`.
"""
resp = self._experiment_rest_get(self.port, '/export-data')
return [TrialResult(**trial_result) for trial_result in resp]
def _get_query_type(self, key: str):
if key == 'trial_concurrency':
return '?update_type=TRIAL_CONCURRENCY'
if key == 'max_experiment_duration':
return '?update_type=MAX_EXEC_DURATION'
if key == 'search_space':
return '?update_type=SEARCH_SPACE'
if key == 'max_trial_number':
return '?update_type=MAX_TRIAL_NUM'
def _update_experiment_profile(self, key: str, value: Any):
"""
Update an experiment's profile
Parameters
----------
key: str
One of `['trial_concurrency', 'max_experiment_duration', 'search_space', 'max_trial_number']`.
value: Any
New value of the key.
"""
api = '/experiment{}'.format(self._get_query_type(key))
experiment_profile = self.get_experiment_profile()
experiment_profile['params'][key] = value
self._experiment_rest_put(self.port, api, experiment_profile)
def update_trial_concurrency(self, value: int):
"""
Update an experiment's trial_concurrency
Parameters
----------
value: int
New trial_concurrency value.
"""
self._update_experiment_profile('trial_concurrency', value)
def update_max_experiment_duration(self, value: str):
"""
Update an experiment's max_experiment_duration
Parameters
----------
value: str
Strings like '1m' for one minute or '2h' for two hours.
SUFFIX may be 's' for seconds, 'm' for minutes, 'h' for hours or 'd' for days.
"""
self._update_experiment_profile('max_experiment_duration', value)
def update_search_space(self, value: dict):
"""
Update the experiment's search_space.
TODO: support searchspace file.
Parameters
----------
value: dict
New search_space.
"""
self._update_experiment_profile('search_space', value)
def update_max_trial_number(self, value):
"""
Update an experiment's max_trial_number
Parameters
----------
value: int
New max_trial_number value.
"""
self._update_experiment_profile('max_trial_number', value)
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
""" A python wrapper for nni rest api
Example:
from nni.experiment import Experiment
exp = Experiment()
exp.start_experiment('../../../../examples/trials/mnist-pytorch/config.yml')
exp.update_concurrency(3)
print(exp.get_experiment_status())
print(exp.get_job_statistics())
print(exp.list_trial_jobs())
exp.stop_experiment()
"""
import sys
import os
import subprocess
import re
import json
import requests
__all__ = [
'LegacyExperiment',
'TrialResult',
'TrialMetricData',
'TrialHyperParameters',
'TrialJob'
]
EXPERIMENT_PATH = 'experiment'
STATUS_PATH = 'check-status'
JOB_STATISTICS_PATH = 'job-statistics'
TRIAL_JOBS_PATH = 'trial-jobs'
METRICS_PATH = 'metric-data'
EXPORT_DATA_PATH = 'export-data'
API_ROOT_PATH = 'api/v1/nni'
def _nni_rest_get(endpoint, api_path, response_type='json'):
_check_endpoint(endpoint)
uri = '{}/{}/{}'.format(endpoint.strip('/'), API_ROOT_PATH, api_path)
res = requests.get(uri)
if _http_succeed(res.status_code):
if response_type == 'json':
return res.json()
elif response_type == 'text':
return res.text
else:
raise RuntimeError('Incorrect response_type')
else:
return None
def _http_succeed(status_code):
return status_code // 100 == 2
def _create_process(cmd):
if sys.platform == 'win32':
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, creationflags=subprocess.CREATE_NEW_PROCESS_GROUP)
else:
process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
while process.poll() is None:
output = process.stdout.readline()
if output:
print(output.decode('utf-8').strip())
return process.returncode
def _check_endpoint(endpoint):
if endpoint is None:
raise RuntimeError("This instance hasn't been connect to an experiment.")
class TrialResult:
"""
TrialResult stores the result information of a trial job.
Parameters
----------
json_obj: dict
Json object that stores the result information.
Attributes
----------
parameter: dict
Hyper parameters for this trial.
value: serializable object, usually a number, or a dict with key "default" and other extra keys
Final result.
trialJobId: str
Trial job id.
"""
def __init__(self, json_obj):
self.parameter = None
self.value = None
self.trialJobId = None
for key in json_obj.keys():
setattr(self, key, json_obj[key])
self.value = json.loads(self.value)
def __repr__(self):
return "TrialResult(parameter: {} value: {} trialJobId: {})".format(self.parameter, self.value, self.trialJobId)
class TrialMetricData:
"""
TrialMetricData stores the metric data of a trial job.
A trial job may have both intermediate metric and final metric.
Parameters
----------
json_obj: dict
Json object that stores the metric data.
Attributes
----------
timestamp: int
Time stamp.
trialJobId: str
Trial job id.
parameterId: int
Parameter id.
type: str
Metric type, `PERIODICAL` for intermediate result and `FINAL` for final result.
sequence: int
Sequence number in this trial.
data: serializable object, usually a number, or a dict with key "default" and other extra keys
Metric data.
"""
def __init__(self, json_obj):
self.timestamp = None
self.trialJobId = None
self.parameterId = None
self.type = None
self.sequence = None
self.data = None
for key in json_obj.keys():
setattr(self, key, json_obj[key])
self.data = json.loads(json.loads(self.data))
def __repr__(self):
return "TrialMetricData(timestamp: {} trialJobId: {} parameterId: {} type: {} sequence: {} data: {})" \
.format(self.timestamp, self.trialJobId, self.parameterId, self.type, self.sequence, self.data)
class TrialHyperParameters:
"""
TrialHyperParameters stores the hyper parameters of a trial job.
Parameters
----------
json_obj: dict
Json object that stores the hyper parameters.
Attributes
----------
parameter_id: int
Parameter id.
parameter_source: str
Parameter source.
parameters: dict
Hyper parameters.
parameter_index: int
Parameter index.
"""
def __init__(self, json_obj):
self.parameter_id = None
self.parameter_source = None
self.parameters = None
self.parameter_index = None
for key in json_obj.keys():
if hasattr(self, key):
setattr(self, key, json_obj[key])
def __repr__(self):
return "TrialHyperParameters(parameter_id: {} parameter_source: {} parameters: {} parameter_index: {})" \
.format(self.parameter_id, self.parameter_source, self.parameters, self.parameter_index)
class TrialJob:
"""
TrialJob stores the information of a trial job.
Parameters
----------
json_obj: dict
json object that stores the hyper parameters
Attributes
----------
trialJobId: str
Trial job id.
status: str
Job status.
hyperParameters: list of `nni.experiment.TrialHyperParameters`
See `nni.experiment.TrialHyperParameters`.
logPath: str
Log path.
startTime: int
Job start time (timestamp).
endTime: int
Job end time (timestamp).
finalMetricData: list of `nni.experiment.TrialMetricData`
See `nni.experiment.TrialMetricData`.
parameter_index: int
Parameter index.
"""
def __init__(self, json_obj):
self.trialJobId = None
self.status = None
self.hyperParameters = None
self.logPath = None
self.startTime = None
self.endTime = None
self.finalMetricData = None
self.stderrPath = None
for key in json_obj.keys():
setattr(self, key, json_obj[key])
if self.hyperParameters:
self.hyperParameters = [TrialHyperParameters(json.loads(e)) for e in self.hyperParameters]
if self.finalMetricData:
self.finalMetricData = [TrialMetricData(e) for e in self.finalMetricData]
def __repr__(self):
return ("TrialJob(trialJobId: {} status: {} hyperParameters: {} logPath: {} startTime: {} "
"endTime: {} finalMetricData: {} stderrPath: {})") \
.format(self.trialJobId, self.status, self.hyperParameters, self.logPath,
self.startTime, self.endTime, self.finalMetricData, self.stderrPath)
class LegacyExperiment:
def __init__(self):
self._endpoint = None
self._exp_id = None
self._port = None
@property
def endpoint(self):
return self._endpoint
@property
def exp_id(self):
return self._exp_id
@property
def port(self):
return self._port
def _exec_command(self, cmd, port=None):
if self._endpoint is not None:
raise RuntimeError('This instance has been connected to an experiment.')
if _create_process(cmd) != 0:
raise RuntimeError('Failed to establish experiment, please check your config.')
else:
if port:
self._port = port
else:
self._port = 8080
self._endpoint = 'http://localhost:{}'.format(self._port)
self._exp_id = self.get_experiment_profile()['id']
def start_experiment(self, config_file, port=None, debug=False):
"""
Start an experiment with specified configuration file and connect to it.
Parameters
----------
config_file: str
Path to the config file.
port: int
The port of restful server, bigger than 1024.
debug: boolean
Set debug mode.
"""
cmd = 'nnictl create --config {}'.format(config_file).split(' ')
if port:
cmd += '--port {}'.format(port).split(' ')
if debug:
cmd += ['--debug']
self._exec_command(cmd, port)
def resume_experiment(self, exp_id, port=None, debug=False):
"""
Resume a stopped experiment with specified experiment id
Parameters
----------
exp_id: str
Experiment id.
port: int
The port of restful server, bigger than 1024.
debug: boolean
Set debug mode.
"""
cmd = 'nnictl resume {}'.format(exp_id).split(' ')
if port:
cmd += '--port {}'.format(port).split(' ')
if debug:
cmd += ['--debug']
self._exec_command(cmd, port)
def view_experiment(self, exp_id, port=None):
"""
View a stopped experiment with specified experiment id.
Parameters
----------
exp_id: str
Experiment id.
port: int
The port of restful server, bigger than 1024.
"""
cmd = 'nnictl view {}'.format(exp_id).split(' ')
if port:
cmd += '--port {}'.format(port).split(' ')
self._exec_command(cmd, port)
def connect_experiment(self, endpoint):
"""
Connect to an existing experiment.
Parameters
----------
endpoint: str
The endpoint of nni rest server, i.e, the url of Web UI. Should be a format like `http://ip:port`.
"""
if self._endpoint is not None:
raise RuntimeError('This instance has been connected to an experiment.')
self._endpoint = endpoint
try:
self._exp_id = self.get_experiment_profile()['id']
except TypeError:
raise RuntimeError('Invalid experiment endpoint.')
self._port = int(re.search(r':[0-9]+', self._endpoint).group().replace(':', ''))
def stop_experiment(self):
"""Stop the experiment.
"""
_check_endpoint(self._endpoint)
cmd = 'nnictl stop {}'.format(self._exp_id).split(' ')
if _create_process(cmd) != 0:
raise RuntimeError('Failed to stop experiment.')
self._endpoint = None
self._exp_id = None
self._port = None
def update_searchspace(self, filename):
"""
Update the experiment's search space.
Parameters
----------
filename: str
Path to the searchspace file.
"""
_check_endpoint(self._endpoint)
cmd = 'nnictl update searchspace {} --filename {}'.format(self._exp_id, filename).split(' ')
if _create_process(cmd) != 0:
raise RuntimeError('Failed to update searchspace.')
def update_concurrency(self, value):
"""
Update an experiment's concurrency
Parameters
----------
value: int
New concurrency value.
"""
_check_endpoint(self._endpoint)
cmd = 'nnictl update concurrency {} --value {}'.format(self._exp_id, value).split(' ')
if _create_process(cmd) != 0:
raise RuntimeError('Failed to update concurrency.')
def update_duration(self, value):
"""
Update an experiment's duration
Parameters
----------
value: str
Strings like '1m' for one minute or '2h' for two hours.
SUFFIX may be 's' for seconds, 'm' for minutes, 'h' for hours or 'd' for days.
"""
_check_endpoint(self._endpoint)
cmd = 'nnictl update duration {} --value {}'.format(self._exp_id, value).split(' ')
if _create_process(cmd) != 0:
raise RuntimeError('Failed to update duration.')
def update_trailnum(self, value):
"""
Update an experiment's maxtrialnum
Parameters
----------
value: int
New trailnum value.
"""
_check_endpoint(self._endpoint)
cmd = 'nnictl update trialnum {} --value {}'.format(self._exp_id, value).split(' ')
if _create_process(cmd) != 0:
raise RuntimeError('Failed to update trailnum.')
def get_experiment_status(self):
"""
Return experiment status as a dict.
Returns
----------
dict
Experiment status.
"""
_check_endpoint(self._endpoint)
return _nni_rest_get(self._endpoint, STATUS_PATH)
def get_trial_job(self, trial_job_id):
"""
Return a trial job.
Parameters
----------
trial_job_id: str
Trial job id.
Returns
----------
nnicli.TrialJob
A `nnicli.TrialJob` instance corresponding to `trial_job_id`.
"""
_check_endpoint(self._endpoint)
assert trial_job_id is not None
trial_job = _nni_rest_get(self._endpoint, os.path.join(TRIAL_JOBS_PATH, trial_job_id))
return TrialJob(trial_job)
def list_trial_jobs(self):
"""
Return information for all trial jobs as a list.
Returns
----------
list
List of `nnicli.TrialJob`.
"""
_check_endpoint(self._endpoint)
trial_jobs = _nni_rest_get(self._endpoint, TRIAL_JOBS_PATH)
return [TrialJob(e) for e in trial_jobs]
def get_job_statistics(self):
"""
Return trial job statistics information as a dict.
Returns
----------
list
Job statistics information.
"""
_check_endpoint(self._endpoint)
return _nni_rest_get(self._endpoint, JOB_STATISTICS_PATH)
def get_job_metrics(self, trial_job_id=None):
"""
Return trial job metrics.
Parameters
----------
trial_job_id: str
trial job id. if this parameter is None, all trail jobs' metrics will be returned.
Returns
----------
dict
Each key is a trialJobId, the corresponding value is a list of `nnicli.TrialMetricData`.
"""
_check_endpoint(self._endpoint)
api_path = METRICS_PATH if trial_job_id is None else os.path.join(METRICS_PATH, trial_job_id)
output = {}
trail_metrics = _nni_rest_get(self._endpoint, api_path)
for metric in trail_metrics:
trial_id = metric["trialJobId"]
if trial_id not in output:
output[trial_id] = [TrialMetricData(metric)]
else:
output[trial_id].append(TrialMetricData(metric))
return output
def export_data(self):
"""
Return exported information for all trial jobs.
Returns
----------
list
List of `nnicli.TrialResult`.
"""
_check_endpoint(self._endpoint)
trial_results = _nni_rest_get(self._endpoint, EXPORT_DATA_PATH)
return [TrialResult(e) for e in trial_results]
def get_experiment_profile(self):
"""
Return experiment profile as a dict.
Returns
----------
dict
The profile of the experiment.
"""
_check_endpoint(self._endpoint)
return _nni_rest_get(self._endpoint, EXPERIMENT_PATH)
......@@ -142,17 +142,6 @@ testCases:
kwargs:
import_data_file_path: config/nnictl_experiment/test_import.json
- name: nnicli
configFile: test/config/examples/sklearn-regression.yml
config:
maxTrialNum: 4
trialConcurrency: 4
launchCommand: python3 -c 'from nni.experiment import LegacyExperiment as Experiment; exp = Experiment(); exp.start_experiment("$configFile")'
stopCommand: python3 -c 'from nni.experiment import LegacyExperiment as Experiment; exp = Experiment(); exp.connect_experiment("http://localhost:8080/"); exp.stop_experiment()'
validator:
class: NnicliValidator
platform: linux darwin
- name: foreground
configFile: test/config/examples/sklearn-regression.yml
launchCommand: python3 nni_test/nnitest/foreground.py --config $configFile --timeout 45
......
......@@ -109,17 +109,6 @@ testCases:
validator:
class: ExportValidator
- name: nnicli
configFile: test/config/examples/sklearn-regression.yml
config:
maxTrialNum: 4
trialConcurrency: 4
launchCommand: python3 -c 'from nni.experiment import LegacyExperiment as Experiment; exp = Experiment(); exp.start_experiment("$configFile")'
stopCommand: python3 -c 'from nni.experiment import LegacyExperiment as Experiment; exp = Experiment(); exp.connect_experiment("http://localhost:8080/"); exp.stop_experiment()'
validator:
class: NnicliValidator
platform: linux darwin
- name: foreground
configFile: test/config/examples/sklearn-regression.yml
launchCommand: python3 nni_test/nnitest/foreground.py --config $configFile --timeout 45
......
......@@ -42,17 +42,6 @@ testCases:
kwargs:
expected_result_file: expected_metrics_dict.json
- name: nnicli
configFile: test/config/examples/sklearn-regression.yml
config:
maxTrialNum: 4
trialConcurrency: 4
launchCommand: python3 -c 'from nni.experiment import LegacyExperiment as Experiment; exp = Experiment(); exp.start_experiment("$configFile")'
stopCommand: python3 -c 'from nni.experiment import LegacyExperiment as Experiment; exp = Experiment(); exp.connect_experiment("http://localhost:8080/"); exp.stop_experiment()'
validator:
class: NnicliValidator
platform: linux darwin
- name: multi-thread
configFile: test/config/multi_thread/config.yml
......
......@@ -6,7 +6,7 @@ from os import remove
import subprocess
import json
import requests
from nni.experiment import LegacyExperiment as Experiment
from nni.experiment import Experiment
from nni.tools.nnictl.updater import load_search_space
from utils import METRICS_URL, GET_IMPORTED_DATA_URL
......@@ -93,7 +93,7 @@ class NnicliValidator(ITValidator):
def __call__(self, rest_endpoint, experiment_dir, nni_source_dir, **kwargs):
print(rest_endpoint)
exp = Experiment()
exp.connect_experiment(rest_endpoint)
exp.connect_experiment(int(rest_endpoint.split(':')[-1]))
print(exp.get_job_statistics())
print(exp.get_experiment_status())
print(exp.list_trial_jobs())
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment