Unverified Commit b4365e01 authored by J-shang's avatar J-shang Committed by GitHub
Browse files

[Doc] update results (#5105)

parent ecd08f8f
......@@ -111,7 +111,8 @@ linkcheck_ignore = [
r'https://1drv\.ms/', # OneDrive (shortcut)
r'https://onedrive\.live\.com/', # OneDrive
r'https://www\.openml\.org/', # OpenML
r'https://ml\.informatik\.uni-freiburg\.de/'
r'https://ml\.informatik\.uni-freiburg\.de/',
r'https://docs\.nvidia\.com/deeplearning/',
]
# Ignore all links located in release.rst
......
......@@ -177,7 +177,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Result\nThe speedup is test on the entire validation dataset with batch size 32 on A100.\nWe test under two pytorch version and found the latency varying widely.\n\nSetting 1: pytorch 1.12.1\n\nSetting 2: pytorch 1.10.0\n\n.. list-table:: Prune Bert-base-uncased on MNLI\n :header-rows: 1\n :widths: auto\n\n * - Attention Pruning Method\n - FFN Pruning Method\n - Total Sparsity\n - Accuracy\n - Acc. Drop\n - Speedup (S1)\n - Speedup (S2)\n * -\n -\n - 0%\n - 84.73 / 84.63\n - +0.0 / +0.0\n - 12.56s (x1.00)\n - 4.05s (x1.00)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=5)\n - `taylor-fo-weight-pruner`\n - 51.39%\n - 84.25 / 84.96\n - -0.48 / +0.33\n - 6.85s (x1.83)\n - 2.7s (x1.50)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=10)\n - `taylor-fo-weight-pruner`\n - 66.67%\n - 83.98 / 83.75\n - -0.75 / -0.88\n - 4.73s (x2.66)\n - 2.16s (x1.86)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=20)\n - `taylor-fo-weight-pruner`\n - 77.78%\n - 83.02 / 83.06\n - -1.71 / -1.57\n - 3.35s (x3.75)\n - 1.72s (x2.35)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=30)\n - `taylor-fo-weight-pruner`\n - 87.04%\n - 81.24 / 80.99\n - -3.49 / -3.64\n - 2.19s (x5.74)\n - 1.31s (x3.09)\n\n"
"## Result\nThe speedup is test on the entire validation dataset with batch size 128 on A100.\nWe test under two pytorch version and found the latency varying widely.\n\nSetting 1: pytorch 1.12.1\n\nSetting 2: pytorch 1.10.0\n\n.. list-table:: Prune Bert-base-uncased on MNLI\n :header-rows: 1\n :widths: auto\n\n * - Attention Pruning Method\n - FFN Pruning Method\n - Total Sparsity\n - Accuracy\n - Acc. Drop\n - Speedup (S1)\n - Speedup (S2)\n * -\n -\n - 85.1M (-0.0%)\n - 84.85 / 85.28\n - +0.0 / +0.0\n - 25.60s (x1.00)\n - 8.10s (x1.00)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=1)\n - `taylor-fo-weight-pruner`\n - 54.1M (-36.43%)\n - 85.38 / 85.41\n - +0.53 / +0.13\n - 17.93s (x1.43)\n - 7.22s (x1.12)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=5)\n - `taylor-fo-weight-pruner`\n - 37.1M (-56.40%)\n - 84.73 / 85.12\n - -0.12 / -0.16\n - 12.83s (x2.00)\n - 5.61s (x1.44)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=10)\n - `taylor-fo-weight-pruner`\n - 24.1M (-71.68%)\n - 84.14 / 84.78\n - -0.71 / -0.50\n - 8.93s (x2.87)\n - 4.55s (x1.78)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=20)\n - `taylor-fo-weight-pruner`\n - 14.3M (-83.20%)\n - 83.26 / 82.96\n - -1.59 / -2.32\n - 5.98s (x4.28)\n - 3.56s (x2.28)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=30)\n - `taylor-fo-weight-pruner`\n - 9.9M (-88.37%)\n - 82.22 / 82.19\n - -2.63 / -3.09\n - 4.36s (x5.88)\n - 3.12s (x2.60)\n * - `movement-pruner` (soft, sparsity=0.1, regular_scale=40)\n - `taylor-fo-weight-pruner`\n - 8.8M (-89.66%)\n - 81.64 / 82.39\n - -3.21 / -2.89\n - 3.88s (x6.60)\n - 2.81s (x2.88)\n\n"
]
}
],
......
......@@ -537,7 +537,7 @@ for current_epoch in range(total_epochs):
# %%
# Result
# ------
# The speedup is test on the entire validation dataset with batch size 32 on A100.
# The speedup is test on the entire validation dataset with batch size 128 on A100.
# We test under two pytorch version and found the latency varying widely.
#
# Setting 1: pytorch 1.12.1
......@@ -557,36 +557,50 @@ for current_epoch in range(total_epochs):
# - Speedup (S2)
# * -
# -
# - 0%
# - 84.73 / 84.63
# - 85.1M (-0.0%)
# - 84.85 / 85.28
# - +0.0 / +0.0
# - 12.56s (x1.00)
# - 4.05s (x1.00)
# - 25.60s (x1.00)
# - 8.10s (x1.00)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=1)
# - :ref:`taylor-fo-weight-pruner`
# - 54.1M (-36.43%)
# - 85.38 / 85.41
# - +0.53 / +0.13
# - 17.93s (x1.43)
# - 7.22s (x1.12)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=5)
# - :ref:`taylor-fo-weight-pruner`
# - 51.39%
# - 84.25 / 84.96
# - -0.48 / +0.33
# - 6.85s (x1.83)
# - 2.7s (x1.50)
# - 37.1M (-56.40%)
# - 84.73 / 85.12
# - -0.12 / -0.16
# - 12.83s (x2.00)
# - 5.61s (x1.44)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=10)
# - :ref:`taylor-fo-weight-pruner`
# - 66.67%
# - 83.98 / 83.75
# - -0.75 / -0.88
# - 4.73s (x2.66)
# - 2.16s (x1.86)
# - 24.1M (-71.68%)
# - 84.14 / 84.78
# - -0.71 / -0.50
# - 8.93s (x2.87)
# - 4.55s (x1.78)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=20)
# - :ref:`taylor-fo-weight-pruner`
# - 77.78%
# - 83.02 / 83.06
# - -1.71 / -1.57
# - 3.35s (x3.75)
# - 1.72s (x2.35)
# - 14.3M (-83.20%)
# - 83.26 / 82.96
# - -1.59 / -2.32
# - 5.98s (x4.28)
# - 3.56s (x2.28)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=30)
# - :ref:`taylor-fo-weight-pruner`
# - 87.04%
# - 81.24 / 80.99
# - -3.49 / -3.64
# - 2.19s (x5.74)
# - 1.31s (x3.09)
# - 9.9M (-88.37%)
# - 82.22 / 82.19
# - -2.63 / -3.09
# - 4.36s (x5.88)
# - 3.12s (x2.60)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=40)
# - :ref:`taylor-fo-weight-pruner`
# - 8.8M (-89.66%)
# - 81.64 / 82.39
# - -3.21 / -2.89
# - 3.88s (x6.60)
# - 2.81s (x2.88)
4935f5727dd073c91bcfab8b9f0676d7
\ No newline at end of file
d3191675dd9427c6906f2bd3929ee382
\ No newline at end of file
......@@ -643,11 +643,11 @@ NNI will support per-step-pruning-schedule in the future, then can use an pruner
.. GENERATED FROM PYTHON SOURCE LINES 538-593
.. GENERATED FROM PYTHON SOURCE LINES 538-607
Result
------
The speedup is test on the entire validation dataset with batch size 32 on A100.
The speedup is test on the entire validation dataset with batch size 128 on A100.
We test under two pytorch version and found the latency varying widely.
Setting 1: pytorch 1.12.1
......@@ -667,44 +667,58 @@ Setting 2: pytorch 1.10.0
- Speedup (S2)
* -
-
- 0%
- 84.73 / 84.63
- 85.1M (-0.0%)
- 84.85 / 85.28
- +0.0 / +0.0
- 12.56s (x1.00)
- 4.05s (x1.00)
- 25.60s (x1.00)
- 8.10s (x1.00)
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=1)
- :ref:`taylor-fo-weight-pruner`
- 54.1M (-36.43%)
- 85.38 / 85.41
- +0.53 / +0.13
- 17.93s (x1.43)
- 7.22s (x1.12)
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=5)
- :ref:`taylor-fo-weight-pruner`
- 51.39%
- 84.25 / 84.96
- -0.48 / +0.33
- 6.85s (x1.83)
- 2.7s (x1.50)
- 37.1M (-56.40%)
- 84.73 / 85.12
- -0.12 / -0.16
- 12.83s (x2.00)
- 5.61s (x1.44)
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=10)
- :ref:`taylor-fo-weight-pruner`
- 66.67%
- 83.98 / 83.75
- -0.75 / -0.88
- 4.73s (x2.66)
- 2.16s (x1.86)
- 24.1M (-71.68%)
- 84.14 / 84.78
- -0.71 / -0.50
- 8.93s (x2.87)
- 4.55s (x1.78)
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=20)
- :ref:`taylor-fo-weight-pruner`
- 77.78%
- 83.02 / 83.06
- -1.71 / -1.57
- 3.35s (x3.75)
- 1.72s (x2.35)
- 14.3M (-83.20%)
- 83.26 / 82.96
- -1.59 / -2.32
- 5.98s (x4.28)
- 3.56s (x2.28)
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=30)
- :ref:`taylor-fo-weight-pruner`
- 87.04%
- 81.24 / 80.99
- -3.49 / -3.64
- 2.19s (x5.74)
- 1.31s (x3.09)
- 9.9M (-88.37%)
- 82.22 / 82.19
- -2.63 / -3.09
- 4.36s (x5.88)
- 3.12s (x2.60)
* - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=40)
- :ref:`taylor-fo-weight-pruner`
- 8.8M (-89.66%)
- 81.64 / 82.39
- -3.21 / -2.89
- 3.88s (x6.60)
- 2.81s (x2.88)
.. rst-class:: sphx-glr-timing
**Total running time of the script:** ( 0 minutes 41.637 seconds)
**Total running time of the script:** ( 0 minutes 20.822 seconds)
.. _sphx_glr_download_tutorials_pruning_bert_glue.py:
......
......@@ -5,10 +5,10 @@
Computation times
=================
**01:51.710** total execution time for **tutorials** files:
**00:20.822** total execution time for **tutorials** files:
+-----------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_tutorials_pruning_bert_glue.py` (``pruning_bert_glue.py``) | 00:00.000 | 0.0 MB |
| :ref:`sphx_glr_tutorials_pruning_bert_glue.py` (``pruning_bert_glue.py``) | 00:20.822 | 0.0 MB |
+-----------------------------------------------------------------------------------------------------+-----------+--------+
| :ref:`sphx_glr_tutorials_darts.py` (``darts.py``) | 01:51.710 | 0.0 MB |
+-----------------------------------------------------------------------------------------------------+-----------+--------+
......
......@@ -537,7 +537,7 @@ for current_epoch in range(total_epochs):
# %%
# Result
# ------
# The speedup is test on the entire validation dataset with batch size 32 on A100.
# The speedup is test on the entire validation dataset with batch size 128 on A100.
# We test under two pytorch version and found the latency varying widely.
#
# Setting 1: pytorch 1.12.1
......@@ -557,36 +557,50 @@ for current_epoch in range(total_epochs):
# - Speedup (S2)
# * -
# -
# - 0%
# - 84.73 / 84.63
# - 85.1M (-0.0%)
# - 84.85 / 85.28
# - +0.0 / +0.0
# - 12.56s (x1.00)
# - 4.05s (x1.00)
# - 25.60s (x1.00)
# - 8.10s (x1.00)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=1)
# - :ref:`taylor-fo-weight-pruner`
# - 54.1M (-36.43%)
# - 85.38 / 85.41
# - +0.53 / +0.13
# - 17.93s (x1.43)
# - 7.22s (x1.12)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=5)
# - :ref:`taylor-fo-weight-pruner`
# - 51.39%
# - 84.25 / 84.96
# - -0.48 / +0.33
# - 6.85s (x1.83)
# - 2.7s (x1.50)
# - 37.1M (-56.40%)
# - 84.73 / 85.12
# - -0.12 / -0.16
# - 12.83s (x2.00)
# - 5.61s (x1.44)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=10)
# - :ref:`taylor-fo-weight-pruner`
# - 66.67%
# - 83.98 / 83.75
# - -0.75 / -0.88
# - 4.73s (x2.66)
# - 2.16s (x1.86)
# - 24.1M (-71.68%)
# - 84.14 / 84.78
# - -0.71 / -0.50
# - 8.93s (x2.87)
# - 4.55s (x1.78)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=20)
# - :ref:`taylor-fo-weight-pruner`
# - 77.78%
# - 83.02 / 83.06
# - -1.71 / -1.57
# - 3.35s (x3.75)
# - 1.72s (x2.35)
# - 14.3M (-83.20%)
# - 83.26 / 82.96
# - -1.59 / -2.32
# - 5.98s (x4.28)
# - 3.56s (x2.28)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=30)
# - :ref:`taylor-fo-weight-pruner`
# - 87.04%
# - 81.24 / 80.99
# - -3.49 / -3.64
# - 2.19s (x5.74)
# - 1.31s (x3.09)
# - 9.9M (-88.37%)
# - 82.22 / 82.19
# - -2.63 / -3.09
# - 4.36s (x5.88)
# - 3.12s (x2.60)
# * - :ref:`movement-pruner` (soft, sparsity=0.1, regular_scale=40)
# - :ref:`taylor-fo-weight-pruner`
# - 8.8M (-89.66%)
# - 81.64 / 82.39
# - -3.21 / -2.89
# - 3.88s (x6.60)
# - 2.81s (x2.88)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment