@@ -39,7 +39,7 @@ TPE, as a black-box optimization, can be used in various scenarios and shows goo
**Requirement of classArg**
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
**Usage example:**
...
...
@@ -65,7 +65,7 @@ Random search is suggested when each trial does not take too long (e.g., each tr
**Requirement of classArg:**
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
**Usage example**
...
...
@@ -89,7 +89,7 @@ Anneal is suggested when each trial does not take too long, and you have enough
**Requirement of classArg**
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
**Usage example**
...
...
@@ -145,7 +145,7 @@ Similar to TPE, SMAC is also a black-box tuner which can be tried in various sce
**Requirement of classArg**
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
**Usage example**
...
...
@@ -232,7 +232,7 @@ It is suggested when you have limited computation resource but have relatively l
**Requirement of classArg**
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
***R** (*int, optional, default = 60*) - the maximum STEPS (could be the number of mini-batches or epochs) can be allocated to a trial. Each trial should use STEPS to control how long it runs.
***eta** (*int, optional, default = 3*) - `(eta-1)/eta` is the proportion of discarded trials
...
...
@@ -266,7 +266,7 @@ It is suggested that you want to apply deep learning methods to your task (your
**Requirement of classArg**
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
***optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
***task** (*('cv'), optional, default = 'cv'*) - The domain of experiment, for now, this tuner only supports the computer vision(cv) domain.
@@ -306,7 +306,7 @@ Similar to TPE and SMAC, Metis is a black-box tuner. If your system takes a long
**Requirement of classArg**
***optimize_mode** (*'maximize' or 'minimize', optional, default = 'maximize'*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
***optimize_mode** (*'maximize' or 'minimize', optional, default = 'maximize'*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.