Commit b3582788 authored by Shufan Huang's avatar Shufan Huang Committed by chicm-ms
Browse files

Rewrite the definition of “optimize_mode” and rename “LocalMode.md” (#958)

parent 37a984a9
......@@ -74,7 +74,7 @@ The tool dispatches and runs trial jobs generated by tuning algorithms to search
</td>
<td>
<ul>
<li><a href="docs/en_US/tutorial_1_CR_exp_local_api.md">Local Machine</a></li>
<li><a href="docs/en_US/LocalMode.md">Local Machine</a></li>
<li><a href="docs/en_US/RemoteMachineMode.md">Remote Servers</a></li>
<li><a href="docs/en_US/PAIMode.md">OpenPAI</a></li>
<li><a href="docs/en_US/KubeflowMode.md">Kubeflow</a></li>
......@@ -183,7 +183,7 @@ You can use these commands to get more information about the experiment
* [Config an experiment](docs/en_US/ExperimentConfig.md)
* [How to use annotation](docs/en_US/Trials.md#nni-python-annotation)
## **Tutorials**
* [Run an experiment on local (with multiple GPUs)?](docs/en_US/tutorial_1_CR_exp_local_api.md)
* [Run an experiment on local (with multiple GPUs)?](docs/en_US/LocalMode.md)
* [Run an experiment on multiple machines?](docs/en_US/RemoteMachineMode.md)
* [Run an experiment on OpenPAI?](docs/en_US/PAIMode.md)
* [Run an experiment on Kubeflow?](docs/en_US/KubeflowMode.md)
......
......@@ -39,7 +39,7 @@ TPE, as a black-box optimization, can be used in various scenarios and shows goo
**Requirement of classArg**
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
**Usage example:**
......@@ -65,7 +65,7 @@ Random search is suggested when each trial does not take too long (e.g., each tr
**Requirement of classArg:**
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
**Usage example**
......@@ -89,7 +89,7 @@ Anneal is suggested when each trial does not take too long, and you have enough
**Requirement of classArg**
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
**Usage example**
......@@ -145,7 +145,7 @@ Similar to TPE, SMAC is also a black-box tuner which can be tried in various sce
**Requirement of classArg**
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
**Usage example**
......@@ -232,7 +232,7 @@ It is suggested when you have limited computation resource but have relatively l
**Requirement of classArg**
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
* **R** (*int, optional, default = 60*) - the maximum STEPS (could be the number of mini-batches or epochs) can be allocated to a trial. Each trial should use STEPS to control how long it runs.
* **eta** (*int, optional, default = 3*) - `(eta-1)/eta` is the proportion of discarded trials
......@@ -266,7 +266,7 @@ It is suggested that you want to apply deep learning methods to your task (your
**Requirement of classArg**
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
* **task** (*('cv'), optional, default = 'cv'*) - The domain of experiment, for now, this tuner only supports the computer vision(cv) domain.
* **input_width** (*int, optional, default = 32*) - input image width
* **input_channel** (*int, optional, default = 3*) - input image channel
......@@ -306,7 +306,7 @@ Similar to TPE and SMAC, Metis is a black-box tuner. If your system takes a long
**Requirement of classArg**
* **optimize_mode** (*'maximize' or 'minimize', optional, default = 'maximize'*) - If 'maximize', tuners will return the hyperparameter set with larger expectation. If 'minimize', tuner will return the hyperparameter set with smaller expectation.
* **optimize_mode** (*'maximize' or 'minimize', optional, default = 'maximize'*) - If 'maximize', the tuner will target to maximize metrics. If 'minimize', the tuner will target to minimize metrics.
**Usage example**
......
......@@ -57,7 +57,7 @@ Below are the minimum system requirements for NNI on macOS. Due to potential pro
* [Use NNIBoard](WebUI.md)
* [Define search space](SearchSpaceSpec.md)
* [Config an experiment](ExperimentConfig.md)
* [How to run an experiment on local (with multiple GPUs)?](tutorial_1_CR_exp_local_api.md)
* [How to run an experiment on local (with multiple GPUs)?](LocalMode.md)
* [How to run an experiment on multiple machines?](RemoteMachineMode.md)
* [How to run an experiment on OpenPAI?](PAIMode.md)
* [How to run an experiment on Kubernetes through Kubeflow?](KubeflowMode.md)
......
......@@ -53,7 +53,7 @@ More details about how to run an experiment, please refer to [Get Started](Quick
* [How to customize your own tuner?](Customize_Tuner.md)
* [What are assessors supported by NNI?](Builtin_Assessors.md)
* [How to customize your own assessor?](Customize_Assessor.md)
* [How to run an experiment on local?](tutorial_1_CR_exp_local_api.md)
* [How to run an experiment on local?](LocalMode.md)
* [How to run an experiment on multiple machines?](RemoteMachineMode.md)
* [How to run an experiment on OpenPAI?](PAIMode.md)
* [Examples](mnist_examples.md)
\ No newline at end of file
......@@ -225,7 +225,7 @@ Below is the status of the all trials. Specifically:
* [Try different Assessors](Builtin_Assessors.md)
* [How to use command line tool nnictl](NNICTLDOC.md)
* [How to write a trial](Trials.md)
* [How to run an experiment on local (with multiple GPUs)?](tutorial_1_CR_exp_local_api.md)
* [How to run an experiment on local (with multiple GPUs)?](LocalMode.md)
* [How to run an experiment on multiple machines?](RemoteMachineMode.md)
* [How to run an experiment on OpenPAI?](PAIMode.md)
* [How to run an experiment on Kubernetes through Kubeflow?](KubeflowMode.md)
......
......@@ -2,7 +2,7 @@ Introduction to NNI Training Services
=====================================
.. toctree::
Local<tutorial_1_CR_exp_local_api>
Local<LocalMode>
Remote<RemoteMachineMode>
OpenPAI<PAIMode>
Kubeflow<KubeflowMode>
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment