Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nni
Commits
ae50ed14
Unverified
Commit
ae50ed14
authored
Dec 31, 2020
by
Yuge Zhang
Committed by
GitHub
Dec 31, 2020
Browse files
Refactor wrap module as "blackbox_module" (#3238)
parent
15da19d3
Changes
15
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
766 additions
and
743 deletions
+766
-743
nni/retiarii/__init__.py
nni/retiarii/__init__.py
+1
-1
nni/retiarii/codegen/pytorch.py
nni/retiarii/codegen/pytorch.py
+2
-2
nni/retiarii/converter/graph_gen.py
nni/retiarii/converter/graph_gen.py
+459
-479
nni/retiarii/experiment.py
nni/retiarii/experiment.py
+10
-6
nni/retiarii/nn/pytorch/nn.py
nni/retiarii/nn/pytorch/nn.py
+117
-149
nni/retiarii/trainer/pytorch/base.py
nni/retiarii/trainer/pytorch/base.py
+2
-2
nni/retiarii/utils.py
nni/retiarii/utils.py
+66
-49
test/.gitignore
test/.gitignore
+1
-0
test/retiarii_test/darts/darts_model.py
test/retiarii_test/darts/darts_model.py
+2
-5
test/retiarii_test/darts/ops.py
test/retiarii_test/darts/ops.py
+15
-15
test/retiarii_test/darts/test.py
test/retiarii_test/darts/test.py
+5
-5
test/retiarii_test/darts/test_oneshot.py
test/retiarii_test/darts/test_oneshot.py
+2
-2
test/retiarii_test/mnasnet/base_mnasnet.py
test/retiarii_test/mnasnet/base_mnasnet.py
+28
-22
test/retiarii_test/mnasnet/test.py
test/retiarii_test/mnasnet/test.py
+6
-6
test/retiarii_test/mnist/test.py
test/retiarii_test/mnist/test.py
+50
-0
No files found.
nni/retiarii/__init__.py
View file @
ae50ed14
...
@@ -2,4 +2,4 @@ from .operation import Operation
...
@@ -2,4 +2,4 @@ from .operation import Operation
from
.graph
import
*
from
.graph
import
*
from
.execution
import
*
from
.execution
import
*
from
.mutator
import
*
from
.mutator
import
*
from
.utils
import
register_module
from
.utils
import
blackbox
,
blackbox_module
,
register_trainer
\ No newline at end of file
nni/retiarii/codegen/pytorch.py
View file @
ae50ed14
...
@@ -19,10 +19,10 @@ def model_to_pytorch_script(model: Model, placement=None) -> str:
...
@@ -19,10 +19,10 @@ def model_to_pytorch_script(model: Model, placement=None) -> str:
def
_sorted_incoming_edges
(
node
:
Node
)
->
List
[
Edge
]:
def
_sorted_incoming_edges
(
node
:
Node
)
->
List
[
Edge
]:
edges
=
[
edge
for
edge
in
node
.
graph
.
edges
if
edge
.
tail
is
node
]
edges
=
[
edge
for
edge
in
node
.
graph
.
edges
if
edge
.
tail
is
node
]
_logger
.
info
(
'sorted_incoming_edges: %s'
,
str
(
edges
))
_logger
.
debug
(
'sorted_incoming_edges: %s'
,
str
(
edges
))
if
not
edges
:
if
not
edges
:
return
[]
return
[]
_logger
.
info
(
'all tail_slots are None: %s'
,
str
([
edge
.
tail_slot
for
edge
in
edges
]))
_logger
.
debug
(
'all tail_slots are None: %s'
,
str
([
edge
.
tail_slot
for
edge
in
edges
]))
if
all
(
edge
.
tail_slot
is
None
for
edge
in
edges
):
if
all
(
edge
.
tail_slot
is
None
for
edge
in
edges
):
return
edges
return
edges
if
all
(
isinstance
(
edge
.
tail_slot
,
int
)
for
edge
in
edges
):
if
all
(
isinstance
(
edge
.
tail_slot
,
int
)
for
edge
in
edges
):
...
...
nni/retiarii/converter/graph_gen.py
View file @
ae50ed14
This diff is collapsed.
Click to expand it.
nni/retiarii/experiment.py
View file @
ae50ed14
...
@@ -29,6 +29,7 @@ _logger = logging.getLogger(__name__)
...
@@ -29,6 +29,7 @@ _logger = logging.getLogger(__name__)
OneShotTrainers
=
(
DartsTrainer
,
EnasTrainer
,
ProxylessTrainer
,
RandomTrainer
,
SinglePathTrainer
)
OneShotTrainers
=
(
DartsTrainer
,
EnasTrainer
,
ProxylessTrainer
,
RandomTrainer
,
SinglePathTrainer
)
@
dataclass
(
init
=
False
)
@
dataclass
(
init
=
False
)
class
RetiariiExeConfig
(
ConfigBase
):
class
RetiariiExeConfig
(
ConfigBase
):
experiment_name
:
Optional
[
str
]
=
None
experiment_name
:
Optional
[
str
]
=
None
...
@@ -125,14 +126,17 @@ class RetiariiExperiment(Experiment):
...
@@ -125,14 +126,17 @@ class RetiariiExperiment(Experiment):
except
Exception
as
e
:
except
Exception
as
e
:
_logger
.
error
(
'Your base model cannot be parsed by torch.jit.script, please fix the following error:'
)
_logger
.
error
(
'Your base model cannot be parsed by torch.jit.script, please fix the following error:'
)
raise
e
raise
e
base_model
=
convert_to_graph
(
script_module
,
self
.
base_model
,
self
.
recorded_module_args
)
base_model
_ir
=
convert_to_graph
(
script_module
,
self
.
base_model
)
assert
id
(
self
.
trainer
)
in
self
.
recorded_module_args
recorded_module_args
=
get_records
()
trainer_config
=
self
.
recorded_module_args
[
id
(
self
.
trainer
)]
if
id
(
self
.
trainer
)
not
in
recorded_module_args
:
base_model
.
apply_trainer
(
trainer_config
[
'modulename'
],
trainer_config
[
'args'
])
raise
KeyError
(
'Your trainer is not found in registered classes. You might have forgotten to
\
register your customized trainer with @register_trainer decorator.'
)
trainer_config
=
recorded_module_args
[
id
(
self
.
trainer
)]
base_model_ir
.
apply_trainer
(
trainer_config
[
'modulename'
],
trainer_config
[
'args'
])
# handle inline mutations
# handle inline mutations
mutators
=
self
.
_process_inline_mutation
(
base_model
)
mutators
=
self
.
_process_inline_mutation
(
base_model
_ir
)
if
mutators
is
not
None
and
self
.
applied_mutators
:
if
mutators
is
not
None
and
self
.
applied_mutators
:
raise
RuntimeError
(
'Have not supported mixed usage of LayerChoice/InputChoice and mutators,
\
raise
RuntimeError
(
'Have not supported mixed usage of LayerChoice/InputChoice and mutators,
\
do not use mutators when you use LayerChoice/InputChoice'
)
do not use mutators when you use LayerChoice/InputChoice'
)
...
@@ -140,7 +144,7 @@ class RetiariiExperiment(Experiment):
...
@@ -140,7 +144,7 @@ class RetiariiExperiment(Experiment):
self
.
applied_mutators
=
mutators
self
.
applied_mutators
=
mutators
_logger
.
info
(
'Starting strategy...'
)
_logger
.
info
(
'Starting strategy...'
)
Thread
(
target
=
self
.
strategy
.
run
,
args
=
(
base_model
,
self
.
applied_mutators
)).
start
()
Thread
(
target
=
self
.
strategy
.
run
,
args
=
(
base_model
_ir
,
self
.
applied_mutators
)).
start
()
_logger
.
info
(
'Strategy started!'
)
_logger
.
info
(
'Strategy started!'
)
def
start
(
self
,
port
:
int
=
8080
,
debug
:
bool
=
False
)
->
None
:
def
start
(
self
,
port
:
int
=
8080
,
debug
:
bool
=
False
)
->
None
:
...
...
nni/retiarii/nn/pytorch/nn.py
View file @
ae50ed14
import
inspect
import
logging
import
logging
from
typing
import
Any
,
List
from
typing
import
Any
,
List
import
torch
import
torch
import
torch.nn
as
nn
import
torch.nn
as
nn
from
...utils
import
add_record
,
version_larger_equal
from
...utils
import
add_record
,
blackbox_module
,
uid
,
version_larger_equal
_logger
=
logging
.
getLogger
(
__name__
)
_logger
=
logging
.
getLogger
(
__name__
)
...
@@ -40,16 +39,13 @@ if version_larger_equal(torch.__version__, '1.6.0'):
...
@@ -40,16 +39,13 @@ if version_larger_equal(torch.__version__, '1.6.0'):
if
version_larger_equal
(
torch
.
__version__
,
'1.7.0'
):
if
version_larger_equal
(
torch
.
__version__
,
'1.7.0'
):
__all__
.
extend
([
'Unflatten'
,
'SiLU'
,
'TripletMarginWithDistanceLoss'
])
__all__
.
extend
([
'Unflatten'
,
'SiLU'
,
'TripletMarginWithDistanceLoss'
])
#'LazyLinear', 'LazyConv1d', 'LazyConv2d', 'LazyConv3d',
#'LazyConvTranspose1d', 'LazyConvTranspose2d', 'LazyConvTranspose3d',
#'ChannelShuffle'
class
LayerChoice
(
nn
.
Module
):
class
LayerChoice
(
nn
.
Module
):
def
__init__
(
self
,
op_candidates
,
reduction
=
None
,
return_mask
=
False
,
key
=
None
):
def
__init__
(
self
,
op_candidates
,
reduction
=
None
,
return_mask
=
False
,
key
=
None
):
super
(
LayerChoice
,
self
).
__init__
()
super
(
LayerChoice
,
self
).
__init__
()
self
.
candidate
_op
s
=
op_candidates
self
.
op_
candidates
=
op_candidates
self
.
label
=
key
self
.
label
=
key
if
key
is
not
None
else
f
'layerchoice_
{
uid
()
}
'
self
.
key
=
key
# deprecated, for backward compatibility
self
.
key
=
self
.
label
# deprecated, for backward compatibility
for
i
,
module
in
enumerate
(
op_candidates
):
# deprecated, for backward compatibility
for
i
,
module
in
enumerate
(
op_candidates
):
# deprecated, for backward compatibility
self
.
add_module
(
str
(
i
),
module
)
self
.
add_module
(
str
(
i
),
module
)
if
reduction
or
return_mask
:
if
reduction
or
return_mask
:
...
@@ -66,8 +62,8 @@ class InputChoice(nn.Module):
...
@@ -66,8 +62,8 @@ class InputChoice(nn.Module):
self
.
n_candidates
=
n_candidates
self
.
n_candidates
=
n_candidates
self
.
n_chosen
=
n_chosen
self
.
n_chosen
=
n_chosen
self
.
reduction
=
reduction
self
.
reduction
=
reduction
self
.
label
=
key
self
.
label
=
key
if
key
is
not
None
else
f
'inputchoice_
{
uid
()
}
'
self
.
key
=
key
# deprecated, for backward compatibility
self
.
key
=
self
.
label
# deprecated, for backward compatibility
if
choose_from
or
return_mask
:
if
choose_from
or
return_mask
:
_logger
.
warning
(
'input arguments `n_candidates`, `choose_from` and `return_mask` are deprecated!'
)
_logger
.
warning
(
'input arguments `n_candidates`, `choose_from` and `return_mask` are deprecated!'
)
...
@@ -101,6 +97,7 @@ class Placeholder(nn.Module):
...
@@ -101,6 +97,7 @@ class Placeholder(nn.Module):
class
ChosenInputs
(
nn
.
Module
):
class
ChosenInputs
(
nn
.
Module
):
"""
"""
"""
"""
def
__init__
(
self
,
chosen
:
List
[
int
],
reduction
:
str
):
def
__init__
(
self
,
chosen
:
List
[
int
],
reduction
:
str
):
super
().
__init__
()
super
().
__init__
()
self
.
chosen
=
chosen
self
.
chosen
=
chosen
...
@@ -128,9 +125,7 @@ class ChosenInputs(nn.Module):
...
@@ -128,9 +125,7 @@ class ChosenInputs(nn.Module):
# the following are pytorch modules
# the following are pytorch modules
class
Module
(
nn
.
Module
):
Module
=
nn
.
Module
def
__init__
(
self
):
super
(
Module
,
self
).
__init__
()
class
Sequential
(
nn
.
Sequential
):
class
Sequential
(
nn
.
Sequential
):
...
@@ -145,143 +140,116 @@ class ModuleList(nn.ModuleList):
...
@@ -145,143 +140,116 @@ class ModuleList(nn.ModuleList):
super
(
ModuleList
,
self
).
__init__
(
*
args
)
super
(
ModuleList
,
self
).
__init__
(
*
args
)
def
wrap_module
(
original_class
):
Identity
=
blackbox_module
(
nn
.
Identity
)
orig_init
=
original_class
.
__init__
Linear
=
blackbox_module
(
nn
.
Linear
)
argname_list
=
list
(
inspect
.
signature
(
original_class
).
parameters
.
keys
())
Conv1d
=
blackbox_module
(
nn
.
Conv1d
)
# Make copy of original __init__, so we can call it without recursion
Conv2d
=
blackbox_module
(
nn
.
Conv2d
)
Conv3d
=
blackbox_module
(
nn
.
Conv3d
)
def
__init__
(
self
,
*
args
,
**
kws
):
ConvTranspose1d
=
blackbox_module
(
nn
.
ConvTranspose1d
)
full_args
=
{}
ConvTranspose2d
=
blackbox_module
(
nn
.
ConvTranspose2d
)
full_args
.
update
(
kws
)
ConvTranspose3d
=
blackbox_module
(
nn
.
ConvTranspose3d
)
for
i
,
arg
in
enumerate
(
args
):
Threshold
=
blackbox_module
(
nn
.
Threshold
)
full_args
[
argname_list
[
i
]]
=
arg
ReLU
=
blackbox_module
(
nn
.
ReLU
)
add_record
(
id
(
self
),
full_args
)
Hardtanh
=
blackbox_module
(
nn
.
Hardtanh
)
ReLU6
=
blackbox_module
(
nn
.
ReLU6
)
orig_init
(
self
,
*
args
,
**
kws
)
# Call the original __init__
Sigmoid
=
blackbox_module
(
nn
.
Sigmoid
)
Tanh
=
blackbox_module
(
nn
.
Tanh
)
original_class
.
__init__
=
__init__
# Set the class' __init__ to the new one
Softmax
=
blackbox_module
(
nn
.
Softmax
)
return
original_class
Softmax2d
=
blackbox_module
(
nn
.
Softmax2d
)
LogSoftmax
=
blackbox_module
(
nn
.
LogSoftmax
)
ELU
=
blackbox_module
(
nn
.
ELU
)
Identity
=
wrap_module
(
nn
.
Identity
)
SELU
=
blackbox_module
(
nn
.
SELU
)
Linear
=
wrap_module
(
nn
.
Linear
)
CELU
=
blackbox_module
(
nn
.
CELU
)
Conv1d
=
wrap_module
(
nn
.
Conv1d
)
GLU
=
blackbox_module
(
nn
.
GLU
)
Conv2d
=
wrap_module
(
nn
.
Conv2d
)
GELU
=
blackbox_module
(
nn
.
GELU
)
Conv3d
=
wrap_module
(
nn
.
Conv3d
)
Hardshrink
=
blackbox_module
(
nn
.
Hardshrink
)
ConvTranspose1d
=
wrap_module
(
nn
.
ConvTranspose1d
)
LeakyReLU
=
blackbox_module
(
nn
.
LeakyReLU
)
ConvTranspose2d
=
wrap_module
(
nn
.
ConvTranspose2d
)
LogSigmoid
=
blackbox_module
(
nn
.
LogSigmoid
)
ConvTranspose3d
=
wrap_module
(
nn
.
ConvTranspose3d
)
Softplus
=
blackbox_module
(
nn
.
Softplus
)
Threshold
=
wrap_module
(
nn
.
Threshold
)
Softshrink
=
blackbox_module
(
nn
.
Softshrink
)
ReLU
=
wrap_module
(
nn
.
ReLU
)
MultiheadAttention
=
blackbox_module
(
nn
.
MultiheadAttention
)
Hardtanh
=
wrap_module
(
nn
.
Hardtanh
)
PReLU
=
blackbox_module
(
nn
.
PReLU
)
ReLU6
=
wrap_module
(
nn
.
ReLU6
)
Softsign
=
blackbox_module
(
nn
.
Softsign
)
Sigmoid
=
wrap_module
(
nn
.
Sigmoid
)
Softmin
=
blackbox_module
(
nn
.
Softmin
)
Tanh
=
wrap_module
(
nn
.
Tanh
)
Tanhshrink
=
blackbox_module
(
nn
.
Tanhshrink
)
Softmax
=
wrap_module
(
nn
.
Softmax
)
RReLU
=
blackbox_module
(
nn
.
RReLU
)
Softmax2d
=
wrap_module
(
nn
.
Softmax2d
)
AvgPool1d
=
blackbox_module
(
nn
.
AvgPool1d
)
LogSoftmax
=
wrap_module
(
nn
.
LogSoftmax
)
AvgPool2d
=
blackbox_module
(
nn
.
AvgPool2d
)
ELU
=
wrap_module
(
nn
.
ELU
)
AvgPool3d
=
blackbox_module
(
nn
.
AvgPool3d
)
SELU
=
wrap_module
(
nn
.
SELU
)
MaxPool1d
=
blackbox_module
(
nn
.
MaxPool1d
)
CELU
=
wrap_module
(
nn
.
CELU
)
MaxPool2d
=
blackbox_module
(
nn
.
MaxPool2d
)
GLU
=
wrap_module
(
nn
.
GLU
)
MaxPool3d
=
blackbox_module
(
nn
.
MaxPool3d
)
GELU
=
wrap_module
(
nn
.
GELU
)
MaxUnpool1d
=
blackbox_module
(
nn
.
MaxUnpool1d
)
Hardshrink
=
wrap_module
(
nn
.
Hardshrink
)
MaxUnpool2d
=
blackbox_module
(
nn
.
MaxUnpool2d
)
LeakyReLU
=
wrap_module
(
nn
.
LeakyReLU
)
MaxUnpool3d
=
blackbox_module
(
nn
.
MaxUnpool3d
)
LogSigmoid
=
wrap_module
(
nn
.
LogSigmoid
)
FractionalMaxPool2d
=
blackbox_module
(
nn
.
FractionalMaxPool2d
)
Softplus
=
wrap_module
(
nn
.
Softplus
)
FractionalMaxPool3d
=
blackbox_module
(
nn
.
FractionalMaxPool3d
)
Softshrink
=
wrap_module
(
nn
.
Softshrink
)
LPPool1d
=
blackbox_module
(
nn
.
LPPool1d
)
MultiheadAttention
=
wrap_module
(
nn
.
MultiheadAttention
)
LPPool2d
=
blackbox_module
(
nn
.
LPPool2d
)
PReLU
=
wrap_module
(
nn
.
PReLU
)
LocalResponseNorm
=
blackbox_module
(
nn
.
LocalResponseNorm
)
Softsign
=
wrap_module
(
nn
.
Softsign
)
BatchNorm1d
=
blackbox_module
(
nn
.
BatchNorm1d
)
Softmin
=
wrap_module
(
nn
.
Softmin
)
BatchNorm2d
=
blackbox_module
(
nn
.
BatchNorm2d
)
Tanhshrink
=
wrap_module
(
nn
.
Tanhshrink
)
BatchNorm3d
=
blackbox_module
(
nn
.
BatchNorm3d
)
RReLU
=
wrap_module
(
nn
.
RReLU
)
InstanceNorm1d
=
blackbox_module
(
nn
.
InstanceNorm1d
)
AvgPool1d
=
wrap_module
(
nn
.
AvgPool1d
)
InstanceNorm2d
=
blackbox_module
(
nn
.
InstanceNorm2d
)
AvgPool2d
=
wrap_module
(
nn
.
AvgPool2d
)
InstanceNorm3d
=
blackbox_module
(
nn
.
InstanceNorm3d
)
AvgPool3d
=
wrap_module
(
nn
.
AvgPool3d
)
LayerNorm
=
blackbox_module
(
nn
.
LayerNorm
)
MaxPool1d
=
wrap_module
(
nn
.
MaxPool1d
)
GroupNorm
=
blackbox_module
(
nn
.
GroupNorm
)
MaxPool2d
=
wrap_module
(
nn
.
MaxPool2d
)
SyncBatchNorm
=
blackbox_module
(
nn
.
SyncBatchNorm
)
MaxPool3d
=
wrap_module
(
nn
.
MaxPool3d
)
Dropout
=
blackbox_module
(
nn
.
Dropout
)
MaxUnpool1d
=
wrap_module
(
nn
.
MaxUnpool1d
)
Dropout2d
=
blackbox_module
(
nn
.
Dropout2d
)
MaxUnpool2d
=
wrap_module
(
nn
.
MaxUnpool2d
)
Dropout3d
=
blackbox_module
(
nn
.
Dropout3d
)
MaxUnpool3d
=
wrap_module
(
nn
.
MaxUnpool3d
)
AlphaDropout
=
blackbox_module
(
nn
.
AlphaDropout
)
FractionalMaxPool2d
=
wrap_module
(
nn
.
FractionalMaxPool2d
)
FeatureAlphaDropout
=
blackbox_module
(
nn
.
FeatureAlphaDropout
)
FractionalMaxPool3d
=
wrap_module
(
nn
.
FractionalMaxPool3d
)
ReflectionPad1d
=
blackbox_module
(
nn
.
ReflectionPad1d
)
LPPool1d
=
wrap_module
(
nn
.
LPPool1d
)
ReflectionPad2d
=
blackbox_module
(
nn
.
ReflectionPad2d
)
LPPool2d
=
wrap_module
(
nn
.
LPPool2d
)
ReplicationPad2d
=
blackbox_module
(
nn
.
ReplicationPad2d
)
LocalResponseNorm
=
wrap_module
(
nn
.
LocalResponseNorm
)
ReplicationPad1d
=
blackbox_module
(
nn
.
ReplicationPad1d
)
BatchNorm1d
=
wrap_module
(
nn
.
BatchNorm1d
)
ReplicationPad3d
=
blackbox_module
(
nn
.
ReplicationPad3d
)
BatchNorm2d
=
wrap_module
(
nn
.
BatchNorm2d
)
CrossMapLRN2d
=
blackbox_module
(
nn
.
CrossMapLRN2d
)
BatchNorm3d
=
wrap_module
(
nn
.
BatchNorm3d
)
Embedding
=
blackbox_module
(
nn
.
Embedding
)
InstanceNorm1d
=
wrap_module
(
nn
.
InstanceNorm1d
)
EmbeddingBag
=
blackbox_module
(
nn
.
EmbeddingBag
)
InstanceNorm2d
=
wrap_module
(
nn
.
InstanceNorm2d
)
RNNBase
=
blackbox_module
(
nn
.
RNNBase
)
InstanceNorm3d
=
wrap_module
(
nn
.
InstanceNorm3d
)
RNN
=
blackbox_module
(
nn
.
RNN
)
LayerNorm
=
wrap_module
(
nn
.
LayerNorm
)
LSTM
=
blackbox_module
(
nn
.
LSTM
)
GroupNorm
=
wrap_module
(
nn
.
GroupNorm
)
GRU
=
blackbox_module
(
nn
.
GRU
)
SyncBatchNorm
=
wrap_module
(
nn
.
SyncBatchNorm
)
RNNCellBase
=
blackbox_module
(
nn
.
RNNCellBase
)
Dropout
=
wrap_module
(
nn
.
Dropout
)
RNNCell
=
blackbox_module
(
nn
.
RNNCell
)
Dropout2d
=
wrap_module
(
nn
.
Dropout2d
)
LSTMCell
=
blackbox_module
(
nn
.
LSTMCell
)
Dropout3d
=
wrap_module
(
nn
.
Dropout3d
)
GRUCell
=
blackbox_module
(
nn
.
GRUCell
)
AlphaDropout
=
wrap_module
(
nn
.
AlphaDropout
)
PixelShuffle
=
blackbox_module
(
nn
.
PixelShuffle
)
FeatureAlphaDropout
=
wrap_module
(
nn
.
FeatureAlphaDropout
)
Upsample
=
blackbox_module
(
nn
.
Upsample
)
ReflectionPad1d
=
wrap_module
(
nn
.
ReflectionPad1d
)
UpsamplingNearest2d
=
blackbox_module
(
nn
.
UpsamplingNearest2d
)
ReflectionPad2d
=
wrap_module
(
nn
.
ReflectionPad2d
)
UpsamplingBilinear2d
=
blackbox_module
(
nn
.
UpsamplingBilinear2d
)
ReplicationPad2d
=
wrap_module
(
nn
.
ReplicationPad2d
)
PairwiseDistance
=
blackbox_module
(
nn
.
PairwiseDistance
)
ReplicationPad1d
=
wrap_module
(
nn
.
ReplicationPad1d
)
AdaptiveMaxPool1d
=
blackbox_module
(
nn
.
AdaptiveMaxPool1d
)
ReplicationPad3d
=
wrap_module
(
nn
.
ReplicationPad3d
)
AdaptiveMaxPool2d
=
blackbox_module
(
nn
.
AdaptiveMaxPool2d
)
CrossMapLRN2d
=
wrap_module
(
nn
.
CrossMapLRN2d
)
AdaptiveMaxPool3d
=
blackbox_module
(
nn
.
AdaptiveMaxPool3d
)
Embedding
=
wrap_module
(
nn
.
Embedding
)
AdaptiveAvgPool1d
=
blackbox_module
(
nn
.
AdaptiveAvgPool1d
)
EmbeddingBag
=
wrap_module
(
nn
.
EmbeddingBag
)
AdaptiveAvgPool2d
=
blackbox_module
(
nn
.
AdaptiveAvgPool2d
)
RNNBase
=
wrap_module
(
nn
.
RNNBase
)
AdaptiveAvgPool3d
=
blackbox_module
(
nn
.
AdaptiveAvgPool3d
)
RNN
=
wrap_module
(
nn
.
RNN
)
TripletMarginLoss
=
blackbox_module
(
nn
.
TripletMarginLoss
)
LSTM
=
wrap_module
(
nn
.
LSTM
)
ZeroPad2d
=
blackbox_module
(
nn
.
ZeroPad2d
)
GRU
=
wrap_module
(
nn
.
GRU
)
ConstantPad1d
=
blackbox_module
(
nn
.
ConstantPad1d
)
RNNCellBase
=
wrap_module
(
nn
.
RNNCellBase
)
ConstantPad2d
=
blackbox_module
(
nn
.
ConstantPad2d
)
RNNCell
=
wrap_module
(
nn
.
RNNCell
)
ConstantPad3d
=
blackbox_module
(
nn
.
ConstantPad3d
)
LSTMCell
=
wrap_module
(
nn
.
LSTMCell
)
Bilinear
=
blackbox_module
(
nn
.
Bilinear
)
GRUCell
=
wrap_module
(
nn
.
GRUCell
)
CosineSimilarity
=
blackbox_module
(
nn
.
CosineSimilarity
)
PixelShuffle
=
wrap_module
(
nn
.
PixelShuffle
)
Unfold
=
blackbox_module
(
nn
.
Unfold
)
Upsample
=
wrap_module
(
nn
.
Upsample
)
Fold
=
blackbox_module
(
nn
.
Fold
)
UpsamplingNearest2d
=
wrap_module
(
nn
.
UpsamplingNearest2d
)
AdaptiveLogSoftmaxWithLoss
=
blackbox_module
(
nn
.
AdaptiveLogSoftmaxWithLoss
)
UpsamplingBilinear2d
=
wrap_module
(
nn
.
UpsamplingBilinear2d
)
TransformerEncoder
=
blackbox_module
(
nn
.
TransformerEncoder
)
PairwiseDistance
=
wrap_module
(
nn
.
PairwiseDistance
)
TransformerDecoder
=
blackbox_module
(
nn
.
TransformerDecoder
)
AdaptiveMaxPool1d
=
wrap_module
(
nn
.
AdaptiveMaxPool1d
)
TransformerEncoderLayer
=
blackbox_module
(
nn
.
TransformerEncoderLayer
)
AdaptiveMaxPool2d
=
wrap_module
(
nn
.
AdaptiveMaxPool2d
)
TransformerDecoderLayer
=
blackbox_module
(
nn
.
TransformerDecoderLayer
)
AdaptiveMaxPool3d
=
wrap_module
(
nn
.
AdaptiveMaxPool3d
)
Transformer
=
blackbox_module
(
nn
.
Transformer
)
AdaptiveAvgPool1d
=
wrap_module
(
nn
.
AdaptiveAvgPool1d
)
Flatten
=
blackbox_module
(
nn
.
Flatten
)
AdaptiveAvgPool2d
=
wrap_module
(
nn
.
AdaptiveAvgPool2d
)
Hardsigmoid
=
blackbox_module
(
nn
.
Hardsigmoid
)
AdaptiveAvgPool3d
=
wrap_module
(
nn
.
AdaptiveAvgPool3d
)
TripletMarginLoss
=
wrap_module
(
nn
.
TripletMarginLoss
)
ZeroPad2d
=
wrap_module
(
nn
.
ZeroPad2d
)
ConstantPad1d
=
wrap_module
(
nn
.
ConstantPad1d
)
ConstantPad2d
=
wrap_module
(
nn
.
ConstantPad2d
)
ConstantPad3d
=
wrap_module
(
nn
.
ConstantPad3d
)
Bilinear
=
wrap_module
(
nn
.
Bilinear
)
CosineSimilarity
=
wrap_module
(
nn
.
CosineSimilarity
)
Unfold
=
wrap_module
(
nn
.
Unfold
)
Fold
=
wrap_module
(
nn
.
Fold
)
AdaptiveLogSoftmaxWithLoss
=
wrap_module
(
nn
.
AdaptiveLogSoftmaxWithLoss
)
TransformerEncoder
=
wrap_module
(
nn
.
TransformerEncoder
)
TransformerDecoder
=
wrap_module
(
nn
.
TransformerDecoder
)
TransformerEncoderLayer
=
wrap_module
(
nn
.
TransformerEncoderLayer
)
TransformerDecoderLayer
=
wrap_module
(
nn
.
TransformerDecoderLayer
)
Transformer
=
wrap_module
(
nn
.
Transformer
)
Flatten
=
wrap_module
(
nn
.
Flatten
)
Hardsigmoid
=
wrap_module
(
nn
.
Hardsigmoid
)
if
version_larger_equal
(
torch
.
__version__
,
'1.6.0'
):
if
version_larger_equal
(
torch
.
__version__
,
'1.6.0'
):
Hardswish
=
wrap
_module
(
nn
.
Hardswish
)
Hardswish
=
blackbox
_module
(
nn
.
Hardswish
)
if
version_larger_equal
(
torch
.
__version__
,
'1.7.0'
):
if
version_larger_equal
(
torch
.
__version__
,
'1.7.0'
):
SiLU
=
wrap_module
(
nn
.
SiLU
)
SiLU
=
blackbox_module
(
nn
.
SiLU
)
Unflatten
=
wrap_module
(
nn
.
Unflatten
)
Unflatten
=
blackbox_module
(
nn
.
Unflatten
)
TripletMarginWithDistanceLoss
=
wrap_module
(
nn
.
TripletMarginWithDistanceLoss
)
TripletMarginWithDistanceLoss
=
blackbox_module
(
nn
.
TripletMarginWithDistanceLoss
)
#LazyLinear = wrap_module(nn.LazyLinear)
#LazyConv1d = wrap_module(nn.LazyConv1d)
#LazyConv2d = wrap_module(nn.LazyConv2d)
#LazyConv3d = wrap_module(nn.LazyConv3d)
#LazyConvTranspose1d = wrap_module(nn.LazyConvTranspose1d)
#LazyConvTranspose2d = wrap_module(nn.LazyConvTranspose2d)
#LazyConvTranspose3d = wrap_module(nn.LazyConvTranspose3d)
#ChannelShuffle = wrap_module(nn.ChannelShuffle)
\ No newline at end of file
nni/retiarii/trainer/pytorch/base.py
View file @
ae50ed14
...
@@ -43,7 +43,7 @@ def get_default_transform(dataset: str) -> Any:
...
@@ -43,7 +43,7 @@ def get_default_transform(dataset: str) -> Any:
return
None
return
None
@
register_trainer
()
@
register_trainer
class
PyTorchImageClassificationTrainer
(
BaseTrainer
):
class
PyTorchImageClassificationTrainer
(
BaseTrainer
):
"""
"""
Image classification trainer for PyTorch.
Image classification trainer for PyTorch.
...
@@ -80,7 +80,7 @@ class PyTorchImageClassificationTrainer(BaseTrainer):
...
@@ -80,7 +80,7 @@ class PyTorchImageClassificationTrainer(BaseTrainer):
Keyword arguments passed to trainer. Will be passed to Trainer class in future. Currently,
Keyword arguments passed to trainer. Will be passed to Trainer class in future. Currently,
only the key ``max_epochs`` is useful.
only the key ``max_epochs`` is useful.
"""
"""
super
(
PyTorchImageClassificationTrainer
,
self
).
__init__
()
super
().
__init__
()
self
.
_use_cuda
=
torch
.
cuda
.
is_available
()
self
.
_use_cuda
=
torch
.
cuda
.
is_available
()
self
.
model
=
model
self
.
model
=
model
if
self
.
_use_cuda
:
if
self
.
_use_cuda
:
...
...
nni/retiarii/utils.py
View file @
ae50ed14
import
inspect
import
inspect
import
warnings
from
collections
import
defaultdict
from
collections
import
defaultdict
from
typing
import
Any
from
typing
import
Any
...
@@ -10,12 +11,14 @@ def import_(target: str, allow_none: bool = False) -> Any:
...
@@ -10,12 +11,14 @@ def import_(target: str, allow_none: bool = False) -> Any:
module
=
__import__
(
path
,
globals
(),
locals
(),
[
identifier
])
module
=
__import__
(
path
,
globals
(),
locals
(),
[
identifier
])
return
getattr
(
module
,
identifier
)
return
getattr
(
module
,
identifier
)
def
version_larger_equal
(
a
:
str
,
b
:
str
)
->
bool
:
def
version_larger_equal
(
a
:
str
,
b
:
str
)
->
bool
:
# TODO: refactor later
# TODO: refactor later
a
=
a
.
split
(
'+'
)[
0
]
a
=
a
.
split
(
'+'
)[
0
]
b
=
b
.
split
(
'+'
)[
0
]
b
=
b
.
split
(
'+'
)[
0
]
return
tuple
(
map
(
int
,
a
.
split
(
'.'
)))
>=
tuple
(
map
(
int
,
b
.
split
(
'.'
)))
return
tuple
(
map
(
int
,
a
.
split
(
'.'
)))
>=
tuple
(
map
(
int
,
b
.
split
(
'.'
)))
_records
=
{}
_records
=
{}
...
@@ -29,73 +32,87 @@ def add_record(key, value):
...
@@ -29,73 +32,87 @@ def add_record(key, value):
"""
"""
global
_records
global
_records
if
_records
is
not
None
:
if
_records
is
not
None
:
#
assert key not in _records, '{} already in _records'.format(key)
assert
key
not
in
_records
,
'{} already in _records'
.
format
(
key
)
_records
[
key
]
=
value
_records
[
key
]
=
value
def
_register_module
(
original_class
):
def
del_record
(
key
):
orig_init
=
original_class
.
__init__
global
_records
argname_list
=
list
(
inspect
.
signature
(
original_class
).
parameters
.
keys
())
if
_records
is
not
None
:
# Make copy of original __init__, so we can call it without recursion
_records
.
pop
(
key
,
None
)
def
__init__
(
self
,
*
args
,
**
kws
):
full_args
=
{}
full_args
.
update
(
kws
)
for
i
,
arg
in
enumerate
(
args
):
full_args
[
argname_list
[
i
]]
=
arg
add_record
(
id
(
self
),
full_args
)
orig_init
(
self
,
*
args
,
**
kws
)
# Call the original __init__
def
_blackbox_cls
(
cls
,
module_name
,
register_format
=
None
):
class
wrapper
(
cls
):
def
__init__
(
self
,
*
args
,
**
kwargs
):
argname_list
=
list
(
inspect
.
signature
(
cls
).
parameters
.
keys
())
full_args
=
{}
full_args
.
update
(
kwargs
)
original_class
.
__init__
=
__init__
# Set the class' __init__ to the new one
assert
len
(
args
)
<=
len
(
argname_list
),
f
'Length of
{
args
}
is greater than length of
{
argname_list
}
.'
return
original_class
for
argname
,
value
in
zip
(
argname_list
,
args
):
full_args
[
argname
]
=
value
# eject un-serializable arguments
for
k
in
list
(
full_args
.
keys
()):
# The list is not complete and does not support nested cases.
if
not
isinstance
(
full_args
[
k
],
(
int
,
float
,
str
,
dict
,
list
)):
if
not
(
register_format
==
'full'
and
k
==
'model'
):
# no warning if it is base model in trainer
warnings
.
warn
(
f
'
{
cls
}
has un-serializable arguments
{
k
}
whose value is
{
full_args
[
k
]
}
.
\
This is not supported. You can ignore this warning if you are passing the model to trainer.'
)
full_args
.
pop
(
k
)
def
register_module
():
if
register_format
==
'args'
:
"""
add_record
(
id
(
self
),
full_args
)
Register a module.
elif
register_format
==
'full'
:
"""
full_class_name
=
cls
.
__module__
+
'.'
+
cls
.
__name__
# use it as a decorator: @register_module()
add_record
(
id
(
self
),
{
'modulename'
:
full_class_name
,
'args'
:
full_args
})
def
_register
(
cls
):
m
=
_register_module
(
original_class
=
cls
)
return
m
return
_register
super
().
__init__
(
*
args
,
**
kwargs
)
def
__del__
(
self
):
del_record
(
id
(
self
))
def
_register_trainer
(
original_class
):
# using module_name instead of cls.__module__ because it's more natural to see where the module gets wrapped
orig_init
=
original_class
.
__init__
# instead of simply putting torch.nn or etc.
argname_list
=
list
(
inspect
.
signature
(
original_class
).
parameters
.
keys
())
wrapper
.
__module__
=
module_name
# Make copy of original __init__, so we can call it without recursion
wrapper
.
__name__
=
cls
.
__name__
wrapper
.
__qualname__
=
cls
.
__qualname__
wrapper
.
__init__
.
__doc__
=
cls
.
__init__
.
__doc__
full_class_name
=
original_class
.
__module__
+
'.'
+
original_class
.
__name__
return
wrapper
def
__init__
(
self
,
*
args
,
**
kws
):
full_args
=
{}
full_args
.
update
(
kws
)
for
i
,
arg
in
enumerate
(
args
):
# TODO: support both pytorch and tensorflow
from
.nn.pytorch
import
Module
if
isinstance
(
args
[
i
],
Module
):
# ignore the base model object
continue
full_args
[
argname_list
[
i
]]
=
arg
add_record
(
id
(
self
),
{
'modulename'
:
full_class_name
,
'args'
:
full_args
})
orig_init
(
self
,
*
args
,
**
kws
)
# Call the original __init__
def
blackbox
(
cls
,
*
args
,
**
kwargs
):
"""
To create an blackbox instance inline without decorator. For example,
.. code-block:: python
self.op = blackbox(MyCustomOp, hidden_units=128)
"""
# get caller module name
frm
=
inspect
.
stack
()[
1
]
module_name
=
inspect
.
getmodule
(
frm
[
0
]).
__name__
return
_blackbox_cls
(
cls
,
module_name
,
'args'
)(
*
args
,
**
kwargs
)
original_class
.
__init__
=
__init__
# Set the class' __init__ to the new one
return
original_class
def
blackbox_module
(
cls
):
"""
Register a module. Use it as a decorator.
"""
frm
=
inspect
.
stack
()[
1
]
module_name
=
inspect
.
getmodule
(
frm
[
0
]).
__name__
return
_blackbox_cls
(
cls
,
module_name
,
'args'
)
def
register_trainer
():
def
_register
(
cls
):
m
=
_register_trainer
(
original_class
=
cls
)
return
m
return
_register
def
register_trainer
(
cls
):
"""
Register a trainer. Use it as a decorator.
"""
frm
=
inspect
.
stack
()[
1
]
module_name
=
inspect
.
getmodule
(
frm
[
0
]).
__name__
return
_blackbox_cls
(
cls
,
module_name
,
'full'
)
_last_uid
=
defaultdict
(
int
)
_last_uid
=
defaultdict
(
int
)
...
...
test/.gitignore
View file @
ae50ed14
...
@@ -5,6 +5,7 @@ tuner_result.txt
...
@@ -5,6 +5,7 @@ tuner_result.txt
assessor_result.txt
assessor_result.txt
_generated_model.py
_generated_model.py
_generated_model_*.py
data
data
generated
generated
test/retiarii_test/darts/darts_model.py
View file @
ae50ed14
...
@@ -7,9 +7,9 @@ import torch.nn as torch_nn
...
@@ -7,9 +7,9 @@ import torch.nn as torch_nn
import
ops
import
ops
import
nni.retiarii.nn.pytorch
as
nn
import
nni.retiarii.nn.pytorch
as
nn
from
nni.retiarii
import
register_module
from
nni.retiarii
import
blackbox_module
@
blackbox_module
class
AuxiliaryHead
(
nn
.
Module
):
class
AuxiliaryHead
(
nn
.
Module
):
""" Auxiliary head in 2/3 place of network to let the gradient flow well """
""" Auxiliary head in 2/3 place of network to let the gradient flow well """
...
@@ -35,7 +35,6 @@ class AuxiliaryHead(nn.Module):
...
@@ -35,7 +35,6 @@ class AuxiliaryHead(nn.Module):
logits
=
self
.
linear
(
out
)
logits
=
self
.
linear
(
out
)
return
logits
return
logits
@
register_module
()
class
Node
(
nn
.
Module
):
class
Node
(
nn
.
Module
):
def
__init__
(
self
,
node_id
,
num_prev_nodes
,
channels
,
num_downsample_connect
):
def
__init__
(
self
,
node_id
,
num_prev_nodes
,
channels
,
num_downsample_connect
):
super
().
__init__
()
super
().
__init__
()
...
@@ -66,7 +65,6 @@ class Node(nn.Module):
...
@@ -66,7 +65,6 @@ class Node(nn.Module):
#out = [self.drop_path(o) if o is not None else None for o in out]
#out = [self.drop_path(o) if o is not None else None for o in out]
return
self
.
input_switch
(
out
)
return
self
.
input_switch
(
out
)
@
register_module
()
class
Cell
(
nn
.
Module
):
class
Cell
(
nn
.
Module
):
def
__init__
(
self
,
n_nodes
,
channels_pp
,
channels_p
,
channels
,
reduction_p
,
reduction
):
def
__init__
(
self
,
n_nodes
,
channels_pp
,
channels_p
,
channels
,
reduction_p
,
reduction
):
...
@@ -100,7 +98,6 @@ class Cell(nn.Module):
...
@@ -100,7 +98,6 @@ class Cell(nn.Module):
output
=
torch
.
cat
(
new_tensors
,
dim
=
1
)
output
=
torch
.
cat
(
new_tensors
,
dim
=
1
)
return
output
return
output
@
register_module
()
class
CNN
(
nn
.
Module
):
class
CNN
(
nn
.
Module
):
def
__init__
(
self
,
input_size
,
in_channels
,
channels
,
n_classes
,
n_layers
,
n_nodes
=
4
,
def
__init__
(
self
,
input_size
,
in_channels
,
channels
,
n_classes
,
n_layers
,
n_nodes
=
4
,
...
...
test/retiarii_test/darts/ops.py
View file @
ae50ed14
import
torch
import
torch
import
nni.retiarii.nn.pytorch
as
nn
import
nni.retiarii.nn.pytorch
as
nn
from
nni.retiarii
import
register
_module
from
nni.retiarii
import
blackbox
_module
@
register
_module
()
@
blackbox
_module
class
DropPath
(
nn
.
Module
):
class
DropPath
(
nn
.
Module
):
def
__init__
(
self
,
p
=
0.
):
def
__init__
(
self
,
p
=
0.
):
"""
"""
...
@@ -12,7 +12,7 @@ class DropPath(nn.Module):
...
@@ -12,7 +12,7 @@ class DropPath(nn.Module):
p : float
p : float
Probability of an path to be zeroed.
Probability of an path to be zeroed.
"""
"""
super
(
DropPath
,
self
).
__init__
()
super
().
__init__
()
self
.
p
=
p
self
.
p
=
p
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
...
@@ -24,13 +24,13 @@ class DropPath(nn.Module):
...
@@ -24,13 +24,13 @@ class DropPath(nn.Module):
return
x
return
x
@
register
_module
()
@
blackbox
_module
class
PoolBN
(
nn
.
Module
):
class
PoolBN
(
nn
.
Module
):
"""
"""
AvgPool or MaxPool with BN. `pool_type` must be `max` or `avg`.
AvgPool or MaxPool with BN. `pool_type` must be `max` or `avg`.
"""
"""
def
__init__
(
self
,
pool_type
,
C
,
kernel_size
,
stride
,
padding
,
affine
=
True
):
def
__init__
(
self
,
pool_type
,
C
,
kernel_size
,
stride
,
padding
,
affine
=
True
):
super
(
PoolBN
,
self
).
__init__
()
super
().
__init__
()
if
pool_type
.
lower
()
==
'max'
:
if
pool_type
.
lower
()
==
'max'
:
self
.
pool
=
nn
.
MaxPool2d
(
kernel_size
,
stride
,
padding
)
self
.
pool
=
nn
.
MaxPool2d
(
kernel_size
,
stride
,
padding
)
elif
pool_type
.
lower
()
==
'avg'
:
elif
pool_type
.
lower
()
==
'avg'
:
...
@@ -45,13 +45,13 @@ class PoolBN(nn.Module):
...
@@ -45,13 +45,13 @@ class PoolBN(nn.Module):
out
=
self
.
bn
(
out
)
out
=
self
.
bn
(
out
)
return
out
return
out
@
register
_module
()
@
blackbox
_module
class
StdConv
(
nn
.
Module
):
class
StdConv
(
nn
.
Module
):
"""
"""
Standard conv: ReLU - Conv - BN
Standard conv: ReLU - Conv - BN
"""
"""
def
__init__
(
self
,
C_in
,
C_out
,
kernel_size
,
stride
,
padding
,
affine
=
True
):
def
__init__
(
self
,
C_in
,
C_out
,
kernel_size
,
stride
,
padding
,
affine
=
True
):
super
(
StdConv
,
self
).
__init__
()
super
().
__init__
()
self
.
net
=
nn
.
Sequential
(
self
.
net
=
nn
.
Sequential
(
nn
.
ReLU
(),
nn
.
ReLU
(),
nn
.
Conv2d
(
C_in
,
C_out
,
kernel_size
,
stride
,
padding
,
bias
=
False
),
nn
.
Conv2d
(
C_in
,
C_out
,
kernel_size
,
stride
,
padding
,
bias
=
False
),
...
@@ -61,13 +61,13 @@ class StdConv(nn.Module):
...
@@ -61,13 +61,13 @@ class StdConv(nn.Module):
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
return
self
.
net
(
x
)
return
self
.
net
(
x
)
@
register
_module
()
@
blackbox
_module
class
FacConv
(
nn
.
Module
):
class
FacConv
(
nn
.
Module
):
"""
"""
Factorized conv: ReLU - Conv(Kx1) - Conv(1xK) - BN
Factorized conv: ReLU - Conv(Kx1) - Conv(1xK) - BN
"""
"""
def
__init__
(
self
,
C_in
,
C_out
,
kernel_length
,
stride
,
padding
,
affine
=
True
):
def
__init__
(
self
,
C_in
,
C_out
,
kernel_length
,
stride
,
padding
,
affine
=
True
):
super
(
FacConv
,
self
).
__init__
()
super
().
__init__
()
self
.
net
=
nn
.
Sequential
(
self
.
net
=
nn
.
Sequential
(
nn
.
ReLU
(),
nn
.
ReLU
(),
nn
.
Conv2d
(
C_in
,
C_in
,
(
kernel_length
,
1
),
stride
,
padding
,
bias
=
False
),
nn
.
Conv2d
(
C_in
,
C_in
,
(
kernel_length
,
1
),
stride
,
padding
,
bias
=
False
),
...
@@ -78,7 +78,7 @@ class FacConv(nn.Module):
...
@@ -78,7 +78,7 @@ class FacConv(nn.Module):
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
return
self
.
net
(
x
)
return
self
.
net
(
x
)
@
register
_module
()
@
blackbox
_module
class
DilConv
(
nn
.
Module
):
class
DilConv
(
nn
.
Module
):
"""
"""
(Dilated) depthwise separable conv.
(Dilated) depthwise separable conv.
...
@@ -86,7 +86,7 @@ class DilConv(nn.Module):
...
@@ -86,7 +86,7 @@ class DilConv(nn.Module):
If dilation == 2, 3x3 conv => 5x5 receptive field, 5x5 conv => 9x9 receptive field.
If dilation == 2, 3x3 conv => 5x5 receptive field, 5x5 conv => 9x9 receptive field.
"""
"""
def
__init__
(
self
,
C_in
,
C_out
,
kernel_size
,
stride
,
padding
,
dilation
,
affine
=
True
):
def
__init__
(
self
,
C_in
,
C_out
,
kernel_size
,
stride
,
padding
,
dilation
,
affine
=
True
):
super
(
DilConv
,
self
).
__init__
()
super
().
__init__
()
self
.
net
=
nn
.
Sequential
(
self
.
net
=
nn
.
Sequential
(
nn
.
ReLU
(),
nn
.
ReLU
(),
nn
.
Conv2d
(
C_in
,
C_in
,
kernel_size
,
stride
,
padding
,
dilation
=
dilation
,
groups
=
C_in
,
nn
.
Conv2d
(
C_in
,
C_in
,
kernel_size
,
stride
,
padding
,
dilation
=
dilation
,
groups
=
C_in
,
...
@@ -98,14 +98,14 @@ class DilConv(nn.Module):
...
@@ -98,14 +98,14 @@ class DilConv(nn.Module):
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
return
self
.
net
(
x
)
return
self
.
net
(
x
)
@
register
_module
()
@
blackbox
_module
class
SepConv
(
nn
.
Module
):
class
SepConv
(
nn
.
Module
):
"""
"""
Depthwise separable conv.
Depthwise separable conv.
DilConv(dilation=1) * 2.
DilConv(dilation=1) * 2.
"""
"""
def
__init__
(
self
,
C_in
,
C_out
,
kernel_size
,
stride
,
padding
,
affine
=
True
):
def
__init__
(
self
,
C_in
,
C_out
,
kernel_size
,
stride
,
padding
,
affine
=
True
):
super
(
SepConv
,
self
).
__init__
()
super
().
__init__
()
self
.
net
=
nn
.
Sequential
(
self
.
net
=
nn
.
Sequential
(
DilConv
(
C_in
,
C_in
,
kernel_size
,
stride
,
padding
,
dilation
=
1
,
affine
=
affine
),
DilConv
(
C_in
,
C_in
,
kernel_size
,
stride
,
padding
,
dilation
=
1
,
affine
=
affine
),
DilConv
(
C_in
,
C_out
,
kernel_size
,
1
,
padding
,
dilation
=
1
,
affine
=
affine
)
DilConv
(
C_in
,
C_out
,
kernel_size
,
1
,
padding
,
dilation
=
1
,
affine
=
affine
)
...
@@ -114,13 +114,13 @@ class SepConv(nn.Module):
...
@@ -114,13 +114,13 @@ class SepConv(nn.Module):
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
return
self
.
net
(
x
)
return
self
.
net
(
x
)
@
register
_module
()
@
blackbox
_module
class
FactorizedReduce
(
nn
.
Module
):
class
FactorizedReduce
(
nn
.
Module
):
"""
"""
Reduce feature map size by factorized pointwise (stride=2).
Reduce feature map size by factorized pointwise (stride=2).
"""
"""
def
__init__
(
self
,
C_in
,
C_out
,
affine
=
True
):
def
__init__
(
self
,
C_in
,
C_out
,
affine
=
True
):
super
(
FactorizedReduce
,
self
).
__init__
()
super
().
__init__
()
self
.
relu
=
nn
.
ReLU
()
self
.
relu
=
nn
.
ReLU
()
self
.
conv1
=
nn
.
Conv2d
(
C_in
,
C_out
//
2
,
1
,
stride
=
2
,
padding
=
0
,
bias
=
False
)
self
.
conv1
=
nn
.
Conv2d
(
C_in
,
C_out
//
2
,
1
,
stride
=
2
,
padding
=
0
,
bias
=
False
)
self
.
conv2
=
nn
.
Conv2d
(
C_in
,
C_out
//
2
,
1
,
stride
=
2
,
padding
=
0
,
bias
=
False
)
self
.
conv2
=
nn
.
Conv2d
(
C_in
,
C_out
//
2
,
1
,
stride
=
2
,
padding
=
0
,
bias
=
False
)
...
...
test/retiarii_test/darts/test.py
View file @
ae50ed14
...
@@ -13,10 +13,10 @@ from darts_model import CNN
...
@@ -13,10 +13,10 @@ from darts_model import CNN
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
base_model
=
CNN
(
32
,
3
,
16
,
10
,
8
)
base_model
=
CNN
(
32
,
3
,
16
,
10
,
8
)
trainer
=
PyTorchImageClassificationTrainer
(
base_model
,
dataset_cls
=
"CIFAR10"
,
trainer
=
PyTorchImageClassificationTrainer
(
base_model
,
dataset_cls
=
"CIFAR10"
,
dataset_kwargs
=
{
"root"
:
"data/cifar10"
,
"download"
:
True
},
dataset_kwargs
=
{
"root"
:
"data/cifar10"
,
"download"
:
True
},
dataloader_kwargs
=
{
"batch_size"
:
32
},
dataloader_kwargs
=
{
"batch_size"
:
32
},
optimizer_kwargs
=
{
"lr"
:
1e-3
},
optimizer_kwargs
=
{
"lr"
:
1e-3
},
trainer_kwargs
=
{
"max_epochs"
:
1
})
trainer_kwargs
=
{
"max_epochs"
:
1
})
#simple_startegy = TPEStrategy()
#simple_startegy = TPEStrategy()
simple_startegy
=
RandomStrategy
()
simple_startegy
=
RandomStrategy
()
...
@@ -31,4 +31,4 @@ if __name__ == '__main__':
...
@@ -31,4 +31,4 @@ if __name__ == '__main__':
exp_config
.
training_service
.
use_active_gpu
=
True
exp_config
.
training_service
.
use_active_gpu
=
True
exp_config
.
training_service
.
gpu_indices
=
[
1
,
2
]
exp_config
.
training_service
.
gpu_indices
=
[
1
,
2
]
exp
.
run
(
exp_config
,
8081
,
debug
=
True
)
exp
.
run
(
exp_config
,
8081
)
test/retiarii_test/darts/test_oneshot.py
View file @
ae50ed14
...
@@ -56,8 +56,8 @@ def get_dataset(cls, cutout_length=0):
...
@@ -56,8 +56,8 @@ def get_dataset(cls, cutout_length=0):
valid_transform
=
transforms
.
Compose
(
normalize
)
valid_transform
=
transforms
.
Compose
(
normalize
)
if
cls
==
"cifar10"
:
if
cls
==
"cifar10"
:
dataset_train
=
CIFAR10
(
root
=
"./data"
,
train
=
True
,
download
=
True
,
transform
=
train_transform
)
dataset_train
=
CIFAR10
(
root
=
"./data
/cifar10
"
,
train
=
True
,
download
=
True
,
transform
=
train_transform
)
dataset_valid
=
CIFAR10
(
root
=
"./data"
,
train
=
False
,
download
=
True
,
transform
=
valid_transform
)
dataset_valid
=
CIFAR10
(
root
=
"./data
/cifar10
"
,
train
=
False
,
download
=
True
,
transform
=
valid_transform
)
else
:
else
:
raise
NotImplementedError
raise
NotImplementedError
return
dataset_train
,
dataset_valid
return
dataset_train
,
dataset_valid
...
...
test/retiarii_test/mnasnet/base_mnasnet.py
View file @
ae50ed14
from
nni.retiarii
import
blackbox_module
import
nni.retiarii.nn.pytorch
as
nn
import
warnings
import
warnings
import
torch
import
torch
...
@@ -8,8 +10,6 @@ import torch.nn.functional as F
...
@@ -8,8 +10,6 @@ import torch.nn.functional as F
import
sys
import
sys
from
pathlib
import
Path
from
pathlib
import
Path
sys
.
path
.
append
(
str
(
Path
(
__file__
).
resolve
().
parents
[
2
]))
sys
.
path
.
append
(
str
(
Path
(
__file__
).
resolve
().
parents
[
2
]))
import
nni.retiarii.nn.pytorch
as
nn
from
nni.retiarii
import
register_module
# Paper suggests 0.9997 momentum, for TensorFlow. Equivalent PyTorch momentum is
# Paper suggests 0.9997 momentum, for TensorFlow. Equivalent PyTorch momentum is
# 1.0 - tensorflow.
# 1.0 - tensorflow.
...
@@ -27,6 +27,7 @@ class _ResidualBlock(nn.Module):
...
@@ -27,6 +27,7 @@ class _ResidualBlock(nn.Module):
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
return
self
.
net
(
x
)
+
x
return
self
.
net
(
x
)
+
x
class
_InvertedResidual
(
nn
.
Module
):
class
_InvertedResidual
(
nn
.
Module
):
def
__init__
(
self
,
in_ch
,
out_ch
,
kernel_size
,
stride
,
expansion_factor
,
skip
,
bn_momentum
=
0.1
):
def
__init__
(
self
,
in_ch
,
out_ch
,
kernel_size
,
stride
,
expansion_factor
,
skip
,
bn_momentum
=
0.1
):
...
@@ -110,7 +111,7 @@ def _get_depths(depths, alpha):
...
@@ -110,7 +111,7 @@ def _get_depths(depths, alpha):
rather than down. """
rather than down. """
return
[
_round_to_multiple_of
(
depth
*
alpha
,
8
)
for
depth
in
depths
]
return
[
_round_to_multiple_of
(
depth
*
alpha
,
8
)
for
depth
in
depths
]
@
register_module
()
class
MNASNet
(
nn
.
Module
):
class
MNASNet
(
nn
.
Module
):
""" MNASNet, as described in https://arxiv.org/pdf/1807.11626.pdf. This
""" MNASNet, as described in https://arxiv.org/pdf/1807.11626.pdf. This
implements the B1 variant of the model.
implements the B1 variant of the model.
...
@@ -127,7 +128,7 @@ class MNASNet(nn.Module):
...
@@ -127,7 +128,7 @@ class MNASNet(nn.Module):
def
__init__
(
self
,
alpha
,
depths
,
convops
,
kernel_sizes
,
num_layers
,
def
__init__
(
self
,
alpha
,
depths
,
convops
,
kernel_sizes
,
num_layers
,
skips
,
num_classes
=
1000
,
dropout
=
0.2
):
skips
,
num_classes
=
1000
,
dropout
=
0.2
):
super
(
MNASNet
,
self
).
__init__
()
super
().
__init__
()
assert
alpha
>
0.0
assert
alpha
>
0.0
assert
len
(
depths
)
==
len
(
convops
)
==
len
(
kernel_sizes
)
==
len
(
num_layers
)
==
len
(
skips
)
==
7
assert
len
(
depths
)
==
len
(
convops
)
==
len
(
kernel_sizes
)
==
len
(
num_layers
)
==
len
(
skips
)
==
7
self
.
alpha
=
alpha
self
.
alpha
=
alpha
...
@@ -143,22 +144,22 @@ class MNASNet(nn.Module):
...
@@ -143,22 +144,22 @@ class MNASNet(nn.Module):
nn
.
ReLU
(
inplace
=
True
),
nn
.
ReLU
(
inplace
=
True
),
]
]
count
=
0
count
=
0
#for conv, prev_depth, depth, ks, skip, stride, repeat, exp_ratio in \
#
for conv, prev_depth, depth, ks, skip, stride, repeat, exp_ratio in \
# zip(convops, depths[:-1], depths[1:], kernel_sizes, skips, strides, num_layers, exp_ratios):
# zip(convops, depths[:-1], depths[1:], kernel_sizes, skips, strides, num_layers, exp_ratios):
for
filter_size
,
exp_ratio
,
stride
in
zip
(
base_filter_sizes
,
exp_ratios
,
strides
):
for
filter_size
,
exp_ratio
,
stride
in
zip
(
base_filter_sizes
,
exp_ratios
,
strides
):
# TODO: restrict that "choose" can only be used within mutator
# TODO: restrict that "choose" can only be used within mutator
ph
=
nn
.
Placeholder
(
label
=
f
'mutable_
{
count
}
'
,
related_info
=
{
ph
=
nn
.
Placeholder
(
label
=
f
'mutable_
{
count
}
'
,
related_info
=
{
'kernel_size_options'
:
[
1
,
3
,
5
],
'kernel_size_options'
:
[
1
,
3
,
5
],
'n_layer_options'
:
[
1
,
2
,
3
,
4
],
'n_layer_options'
:
[
1
,
2
,
3
,
4
],
'op_type_options'
:
[
'__mutated__.base_mnasnet.RegularConv'
,
'op_type_options'
:
[
'__mutated__.base_mnasnet.RegularConv'
,
'__mutated__.base_mnasnet.DepthwiseConv'
,
'__mutated__.base_mnasnet.DepthwiseConv'
,
'__mutated__.base_mnasnet.MobileConv'
],
'__mutated__.base_mnasnet.MobileConv'
],
#'se_ratio_options': [0, 0.25],
#
'se_ratio_options': [0, 0.25],
'skip_options'
:
[
'identity'
,
'no'
],
'skip_options'
:
[
'identity'
,
'no'
],
'n_filter_options'
:
[
int
(
filter_size
*
x
)
for
x
in
[
0.75
,
1.0
,
1.25
]],
'n_filter_options'
:
[
int
(
filter_size
*
x
)
for
x
in
[
0.75
,
1.0
,
1.25
]],
'exp_ratio'
:
exp_ratio
,
'exp_ratio'
:
exp_ratio
,
'stride'
:
stride
,
'stride'
:
stride
,
'in_ch'
:
depths
[
0
]
if
count
==
0
else
None
'in_ch'
:
depths
[
0
]
if
count
==
0
else
None
})
})
layers
.
append
(
ph
)
layers
.
append
(
ph
)
'''if conv == "mconv":
'''if conv == "mconv":
...
@@ -185,7 +186,7 @@ class MNASNet(nn.Module):
...
@@ -185,7 +186,7 @@ class MNASNet(nn.Module):
#self.for_test = 10
#self.for_test = 10
def
forward
(
self
,
x
):
def
forward
(
self
,
x
):
#if self.for_test == 10:
#
if self.for_test == 10:
x
=
self
.
layers
(
x
)
x
=
self
.
layers
(
x
)
# Equivalent to global avgpool and removing H and W dimensions.
# Equivalent to global avgpool and removing H and W dimensions.
x
=
x
.
mean
([
2
,
3
])
x
=
x
.
mean
([
2
,
3
])
...
@@ -196,7 +197,7 @@ class MNASNet(nn.Module):
...
@@ -196,7 +197,7 @@ class MNASNet(nn.Module):
for
m
in
self
.
modules
():
for
m
in
self
.
modules
():
if
isinstance
(
m
,
nn
.
Conv2d
):
if
isinstance
(
m
,
nn
.
Conv2d
):
torch_nn
.
init
.
kaiming_normal_
(
m
.
weight
,
mode
=
"fan_out"
,
torch_nn
.
init
.
kaiming_normal_
(
m
.
weight
,
mode
=
"fan_out"
,
nonlinearity
=
"relu"
)
nonlinearity
=
"relu"
)
if
m
.
bias
is
not
None
:
if
m
.
bias
is
not
None
:
torch_nn
.
init
.
zeros_
(
m
.
bias
)
torch_nn
.
init
.
zeros_
(
m
.
bias
)
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
elif
isinstance
(
m
,
nn
.
BatchNorm2d
):
...
@@ -204,16 +205,18 @@ class MNASNet(nn.Module):
...
@@ -204,16 +205,18 @@ class MNASNet(nn.Module):
torch_nn
.
init
.
zeros_
(
m
.
bias
)
torch_nn
.
init
.
zeros_
(
m
.
bias
)
elif
isinstance
(
m
,
nn
.
Linear
):
elif
isinstance
(
m
,
nn
.
Linear
):
torch_nn
.
init
.
kaiming_uniform_
(
m
.
weight
,
mode
=
"fan_out"
,
torch_nn
.
init
.
kaiming_uniform_
(
m
.
weight
,
mode
=
"fan_out"
,
nonlinearity
=
"sigmoid"
)
nonlinearity
=
"sigmoid"
)
torch_nn
.
init
.
zeros_
(
m
.
bias
)
torch_nn
.
init
.
zeros_
(
m
.
bias
)
def
test_model
(
model
):
def
test_model
(
model
):
model
(
torch
.
randn
(
2
,
3
,
224
,
224
))
model
(
torch
.
randn
(
2
,
3
,
224
,
224
))
#====================definition of candidate op classes
# ====================definition of candidate op classes
BN_MOMENTUM
=
1
-
0.9997
BN_MOMENTUM
=
1
-
0.9997
class
RegularConv
(
nn
.
Module
):
class
RegularConv
(
nn
.
Module
):
def
__init__
(
self
,
kernel_size
,
in_ch
,
out_ch
,
skip
,
exp_ratio
,
stride
):
def
__init__
(
self
,
kernel_size
,
in_ch
,
out_ch
,
skip
,
exp_ratio
,
stride
):
super
().
__init__
()
super
().
__init__
()
...
@@ -234,6 +237,7 @@ class RegularConv(nn.Module):
...
@@ -234,6 +237,7 @@ class RegularConv(nn.Module):
out
=
out
+
x
out
=
out
+
x
return
out
return
out
class
DepthwiseConv
(
nn
.
Module
):
class
DepthwiseConv
(
nn
.
Module
):
def
__init__
(
self
,
kernel_size
,
in_ch
,
out_ch
,
skip
,
exp_ratio
,
stride
):
def
__init__
(
self
,
kernel_size
,
in_ch
,
out_ch
,
skip
,
exp_ratio
,
stride
):
super
().
__init__
()
super
().
__init__
()
...
@@ -257,6 +261,7 @@ class DepthwiseConv(nn.Module):
...
@@ -257,6 +261,7 @@ class DepthwiseConv(nn.Module):
out
=
out
+
x
out
=
out
+
x
return
out
return
out
class
MobileConv
(
nn
.
Module
):
class
MobileConv
(
nn
.
Module
):
def
__init__
(
self
,
kernel_size
,
in_ch
,
out_ch
,
skip
,
exp_ratio
,
stride
):
def
__init__
(
self
,
kernel_size
,
in_ch
,
out_ch
,
skip
,
exp_ratio
,
stride
):
super
().
__init__
()
super
().
__init__
()
...
@@ -274,7 +279,7 @@ class MobileConv(nn.Module):
...
@@ -274,7 +279,7 @@ class MobileConv(nn.Module):
nn
.
BatchNorm2d
(
mid_ch
,
momentum
=
BN_MOMENTUM
),
nn
.
BatchNorm2d
(
mid_ch
,
momentum
=
BN_MOMENTUM
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
ReLU
(
inplace
=
True
),
# Depthwise
# Depthwise
nn
.
Conv2d
(
mid_ch
,
mid_ch
,
kernel_size
,
padding
=
(
kernel_size
-
1
)
//
2
,
nn
.
Conv2d
(
mid_ch
,
mid_ch
,
kernel_size
,
padding
=
(
kernel_size
-
1
)
//
2
,
stride
=
stride
,
groups
=
mid_ch
,
bias
=
False
),
stride
=
stride
,
groups
=
mid_ch
,
bias
=
False
),
nn
.
BatchNorm2d
(
mid_ch
,
momentum
=
BN_MOMENTUM
),
nn
.
BatchNorm2d
(
mid_ch
,
momentum
=
BN_MOMENTUM
),
nn
.
ReLU
(
inplace
=
True
),
nn
.
ReLU
(
inplace
=
True
),
...
@@ -288,5 +293,6 @@ class MobileConv(nn.Module):
...
@@ -288,5 +293,6 @@ class MobileConv(nn.Module):
out
=
out
+
x
out
=
out
+
x
return
out
return
out
# mnasnet0_5
# mnasnet0_5
ir_module
=
_InvertedResidual
(
16
,
16
,
3
,
1
,
1
,
True
)
ir_module
=
_InvertedResidual
(
16
,
16
,
3
,
1
,
1
,
True
)
\ No newline at end of file
test/retiarii_test/mnasnet/test.py
View file @
ae50ed14
...
@@ -19,12 +19,12 @@ if __name__ == '__main__':
...
@@ -19,12 +19,12 @@ if __name__ == '__main__':
_DEFAULT_NUM_LAYERS
=
[
1
,
3
,
3
,
3
,
2
,
4
,
1
]
_DEFAULT_NUM_LAYERS
=
[
1
,
3
,
3
,
3
,
2
,
4
,
1
]
base_model
=
MNASNet
(
0.5
,
_DEFAULT_DEPTHS
,
_DEFAULT_CONVOPS
,
_DEFAULT_KERNEL_SIZES
,
base_model
=
MNASNet
(
0.5
,
_DEFAULT_DEPTHS
,
_DEFAULT_CONVOPS
,
_DEFAULT_KERNEL_SIZES
,
_DEFAULT_NUM_LAYERS
,
_DEFAULT_SKIPS
)
_DEFAULT_NUM_LAYERS
,
_DEFAULT_SKIPS
)
trainer
=
PyTorchImageClassificationTrainer
(
base_model
,
dataset_cls
=
"CIFAR10"
,
trainer
=
PyTorchImageClassificationTrainer
(
base_model
,
dataset_cls
=
"CIFAR10"
,
dataset_kwargs
=
{
"root"
:
"data/cifar10"
,
"download"
:
True
},
dataset_kwargs
=
{
"root"
:
"data/cifar10"
,
"download"
:
True
},
dataloader_kwargs
=
{
"batch_size"
:
32
},
dataloader_kwargs
=
{
"batch_size"
:
32
},
optimizer_kwargs
=
{
"lr"
:
1e-3
},
optimizer_kwargs
=
{
"lr"
:
1e-3
},
trainer_kwargs
=
{
"max_epochs"
:
1
})
trainer_kwargs
=
{
"max_epochs"
:
1
})
# new interface
# new interface
applied_mutators
=
[]
applied_mutators
=
[]
...
@@ -41,4 +41,4 @@ if __name__ == '__main__':
...
@@ -41,4 +41,4 @@ if __name__ == '__main__':
exp_config
.
max_trial_number
=
10
exp_config
.
max_trial_number
=
10
exp_config
.
training_service
.
use_active_gpu
=
False
exp_config
.
training_service
.
use_active_gpu
=
False
exp
.
run
(
exp_config
,
8081
,
debug
=
True
)
exp
.
run
(
exp_config
,
8081
)
test/retiarii_test/mnist/test.py
0 → 100644
View file @
ae50ed14
import
random
import
nni.retiarii.nn.pytorch
as
nn
import
torch.nn.functional
as
F
from
nni.retiarii.experiment
import
RetiariiExeConfig
,
RetiariiExperiment
from
nni.retiarii.strategies
import
RandomStrategy
from
nni.retiarii.trainer
import
PyTorchImageClassificationTrainer
class
Net
(
nn
.
Module
):
def
__init__
(
self
,
hidden_size
):
super
(
Net
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2d
(
1
,
20
,
5
,
1
)
self
.
conv2
=
nn
.
Conv2d
(
20
,
50
,
5
,
1
)
self
.
fc1
=
nn
.
LayerChoice
([
nn
.
Linear
(
4
*
4
*
50
,
hidden_size
),
nn
.
Linear
(
4
*
4
*
50
,
hidden_size
,
bias
=
False
)
])
self
.
fc2
=
nn
.
Linear
(
hidden_size
,
10
)
def
forward
(
self
,
x
):
x
=
F
.
relu
(
self
.
conv1
(
x
))
x
=
F
.
max_pool2d
(
x
,
2
,
2
)
x
=
F
.
relu
(
self
.
conv2
(
x
))
x
=
F
.
max_pool2d
(
x
,
2
,
2
)
x
=
x
.
view
(
-
1
,
4
*
4
*
50
)
x
=
F
.
relu
(
self
.
fc1
(
x
))
x
=
self
.
fc2
(
x
)
return
F
.
log_softmax
(
x
,
dim
=
1
)
if
__name__
==
'__main__'
:
base_model
=
Net
(
128
)
trainer
=
PyTorchImageClassificationTrainer
(
base_model
,
dataset_cls
=
"MNIST"
,
dataset_kwargs
=
{
"root"
:
"data/mnist"
,
"download"
:
True
},
dataloader_kwargs
=
{
"batch_size"
:
32
},
optimizer_kwargs
=
{
"lr"
:
1e-3
},
trainer_kwargs
=
{
"max_epochs"
:
1
})
simple_startegy
=
RandomStrategy
()
exp
=
RetiariiExperiment
(
base_model
,
trainer
,
[],
simple_startegy
)
exp_config
=
RetiariiExeConfig
(
'local'
)
exp_config
.
experiment_name
=
'mnist_search'
exp_config
.
trial_concurrency
=
2
exp_config
.
max_trial_number
=
10
exp_config
.
training_service
.
use_active_gpu
=
False
exp
.
run
(
exp_config
,
8081
+
random
.
randint
(
0
,
100
))
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment