Unverified Commit a8233663 authored by QuanluZhang's avatar QuanluZhang Committed by GitHub
Browse files

add nas example using general nas programming interface (#1130)

update searchspace_generator, add example, update NAS example
parent 2653f2d6
authorName: default
experimentName: example_mnist
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
#choice: true, false
useAnnotation: true
tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner, MetisTuner
#SMAC (SMAC should be installed through nnictl)
#codeDir: ~/nni/nni/examples/tuners/random_nas_tuner
codeDir: ../../tuners/random_nas_tuner
classFileName: random_nas_tuner.py
className: RandomNASTuner
trial:
command: python3 mnist.py
codeDir: .
gpuNum: 0
"""A deep MNIST classifier using convolutional layers."""
import argparse
import logging
import math
import tempfile
import time
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import nni
import operators as op
FLAGS = None
logger = logging.getLogger('mnist_AutoML')
class MnistNetwork(object):
'''
MnistNetwork is for initializing and building basic network for mnist.
'''
def __init__(self,
channel_1_num,
channel_2_num,
conv_size,
hidden_size,
pool_size,
learning_rate,
x_dim=784,
y_dim=10):
self.channel_1_num = channel_1_num
self.channel_2_num = channel_2_num
self.conv_size = conv_size
self.hidden_size = hidden_size
self.pool_size = pool_size
self.learning_rate = learning_rate
self.x_dim = x_dim
self.y_dim = y_dim
self.images = tf.placeholder(tf.float32, [None, self.x_dim], name='input_x')
self.labels = tf.placeholder(tf.float32, [None, self.y_dim], name='input_y')
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
self.train_step = None
self.accuracy = None
def build_network(self):
'''
Building network for mnist, meanwhile specifying its neural architecture search space
'''
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with tf.name_scope('reshape'):
try:
input_dim = int(math.sqrt(self.x_dim))
except:
print(
'input dim cannot be sqrt and reshape. input dim: ' + str(self.x_dim))
logger.debug(
'input dim cannot be sqrt and reshape. input dim: %s', str(self.x_dim))
raise
x_image = tf.reshape(self.images, [-1, input_dim, input_dim, 1])
"""@nni.mutable_layers(
{
layer_choice: [op.conv2d(size=1, in_ch=1, out_ch=self.channel_1_num),
op.conv2d(size=3, in_ch=1, out_ch=self.channel_1_num),
op.twice_conv2d(size=3, in_ch=1, out_ch=self.channel_1_num),
op.twice_conv2d(size=7, in_ch=1, out_ch=self.channel_1_num),
op.dilated_conv(in_ch=1, out_ch=self.channel_1_num),
op.separable_conv(size=3, in_ch=1, out_ch=self.channel_1_num),
op.separable_conv(size=5, in_ch=1, out_ch=self.channel_1_num),
op.separable_conv(size=7, in_ch=1, out_ch=self.channel_1_num)],
fixed_inputs: [x_image],
layer_output: conv1_out
},
{
layer_choice: [op.post_process(ch_size=self.channel_1_num)],
fixed_inputs: [conv1_out],
layer_output: post1_out
},
{
layer_choice: [op.max_pool(size=3),
op.max_pool(size=5),
op.max_pool(size=7),
op.avg_pool(size=3),
op.avg_pool(size=5),
op.avg_pool(size=7)],
fixed_inputs: [post1_out],
layer_output: pool1_out
},
{
layer_choice: [op.conv2d(size=1, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.conv2d(size=3, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.twice_conv2d(size=3, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.twice_conv2d(size=7, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.dilated_conv(in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.separable_conv(size=3, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.separable_conv(size=5, in_ch=self.channel_1_num, out_ch=self.channel_2_num),
op.separable_conv(size=7, in_ch=self.channel_1_num, out_ch=self.channel_2_num)],
fixed_inputs: [pool1_out],
optional_inputs: [post1_out],
optional_input_size: [0, 1],
layer_output: conv2_out
},
{
layer_choice: [op.post_process(ch_size=self.channel_2_num)],
fixed_inputs: [conv2_out],
layer_output: post2_out
},
{
layer_choice: [op.max_pool(size=3),
op.max_pool(size=5),
op.max_pool(size=7),
op.avg_pool(size=3),
op.avg_pool(size=5),
op.avg_pool(size=7)],
fixed_inputs: [post2_out],
optional_inputs: [post1_out, pool1_out],
optional_input_size: [0, 1],
layer_output: pool2_out
}
)"""
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
last_dim_list = pool2_out.get_shape().as_list()
assert(last_dim_list[1] == last_dim_list[2])
last_dim = last_dim_list[1]
with tf.name_scope('fc1'):
w_fc1 = op.weight_variable(
[last_dim * last_dim * self.channel_2_num, self.hidden_size])
b_fc1 = op.bias_variable([self.hidden_size])
h_pool2_flat = tf.reshape(
pool2_out, [-1, last_dim * last_dim * self.channel_2_num])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of features.
with tf.name_scope('dropout'):
h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)
# Map the 1024 features to 10 classes, one for each digit
with tf.name_scope('fc2'):
w_fc2 = op.weight_variable([self.hidden_size, self.y_dim])
b_fc2 = op.bias_variable([self.y_dim])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=self.labels, logits=y_conv))
with tf.name_scope('adam_optimizer'):
self.train_step = tf.train.AdamOptimizer(
self.learning_rate).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(
tf.argmax(y_conv, 1), tf.argmax(self.labels, 1))
self.accuracy = tf.reduce_mean(
tf.cast(correct_prediction, tf.float32))
def download_mnist_retry(data_dir, max_num_retries=20):
"""Try to download mnist dataset and avoid errors"""
for _ in range(max_num_retries):
try:
return input_data.read_data_sets(data_dir, one_hot=True)
except tf.errors.AlreadyExistsError:
time.sleep(1)
raise Exception("Failed to download MNIST.")
def main(params):
'''
Main function, build mnist network, run and send result to NNI.
'''
# Import data
mnist = download_mnist_retry(params['data_dir'])
print('Mnist download data done.')
logger.debug('Mnist download data done.')
# Create the model
# Build the graph for the deep net
mnist_network = MnistNetwork(channel_1_num=params['channel_1_num'],
channel_2_num=params['channel_2_num'],
conv_size=params['conv_size'],
hidden_size=params['hidden_size'],
pool_size=params['pool_size'],
learning_rate=params['learning_rate'])
mnist_network.build_network()
logger.debug('Mnist build network done.')
# Write log
graph_location = tempfile.mkdtemp()
logger.debug('Saving graph to: %s', graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
test_acc = 0.0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(params['batch_num']):
batch = mnist.train.next_batch(params['batch_size'])
mnist_network.train_step.run(feed_dict={mnist_network.images: batch[0],
mnist_network.labels: batch[1],
mnist_network.keep_prob: 1 - params['dropout_rate']}
)
if i % 100 == 0:
test_acc = mnist_network.accuracy.eval(
feed_dict={mnist_network.images: mnist.test.images,
mnist_network.labels: mnist.test.labels,
mnist_network.keep_prob: 1.0})
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
test_acc = mnist_network.accuracy.eval(
feed_dict={mnist_network.images: mnist.test.images,
mnist_network.labels: mnist.test.labels,
mnist_network.keep_prob: 1.0})
nni.report_final_result(test_acc)
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')
def get_params():
''' Get parameters from command line '''
parser = argparse.ArgumentParser()
parser.add_argument("--data_dir", type=str, default='/tmp/tensorflow/mnist/input_data', help="data directory")
parser.add_argument("--dropout_rate", type=float, default=0.5, help="dropout rate")
parser.add_argument("--channel_1_num", type=int, default=32)
parser.add_argument("--channel_2_num", type=int, default=64)
parser.add_argument("--conv_size", type=int, default=5)
parser.add_argument("--pool_size", type=int, default=2)
parser.add_argument("--hidden_size", type=int, default=1024)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--batch_num", type=int, default=2000)
parser.add_argument("--batch_size", type=int, default=32)
args, _ = parser.parse_known_args()
return args
if __name__ == '__main__':
try:
params = vars(get_params())
main(params)
except Exception as exception:
logger.exception(exception)
raise
import tensorflow as tf
import math
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def sum_op(inputs):
"""sum_op"""
fixed_input = inputs[0][0]
optional_input = inputs[1][0]
fixed_shape = fixed_input.get_shape().as_list()
optional_shape = optional_input.get_shape().as_list()
assert fixed_shape[1] == fixed_shape[2]
assert optional_shape[1] == optional_shape[2]
pool_size = math.ceil(optional_shape[1] / fixed_shape[1])
pool_out = tf.nn.avg_pool(optional_input, ksize=[1, pool_size, pool_size, 1], strides=[1, pool_size, pool_size, 1], padding='SAME')
conv_matrix = weight_variable([1, 1, optional_shape[3], fixed_shape[3]])
conv_out = tf.nn.conv2d(pool_out, conv_matrix, strides=[1, 1, 1, 1], padding='SAME')
return fixed_input + conv_out
def conv2d(inputs, size=-1, in_ch=-1, out_ch=-1):
"""conv2d returns a 2d convolution layer with full stride."""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size in [1, 3]:
w_matrix = weight_variable([size, size, in_ch, out_ch])
return tf.nn.conv2d(x_input, w_matrix, strides=[1, 1, 1, 1], padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def twice_conv2d(inputs, size=-1, in_ch=-1, out_ch=-1):
"""twice_conv2d"""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size in [3, 7]:
w_matrix1 = weight_variable([1, size, in_ch, int(out_ch/2)])
out = tf.nn.conv2d(x_input, w_matrix1, strides=[1, 1, 1, 1], padding='SAME')
w_matrix2 = weight_variable([size, 1, int(out_ch/2), out_ch])
return tf.nn.conv2d(out, w_matrix2, strides=[1, 1, 1, 1], padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def dilated_conv(inputs, size=3, in_ch=-1, out_ch=-1):
"""dilated_conv"""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size == 3:
w_matrix = weight_variable([size, size, in_ch, out_ch])
return tf.nn.atrous_conv2d(x_input, w_matrix, rate=2, padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def separable_conv(inputs, size=-1, in_ch=-1, out_ch=-1):
"""separable_conv"""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size in [3, 5, 7]:
depth_matrix = weight_variable([size, size, in_ch, 1])
point_matrix = weight_variable([1, 1, 1*in_ch, out_ch])
return tf.nn.separable_conv2d(x_input, depth_matrix, point_matrix, strides=[1, 1, 1, 1], padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def avg_pool(inputs, size=-1):
"""avg_pool downsamples a feature map."""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size in [3, 5, 7]:
return tf.nn.avg_pool(x_input, ksize=[1, size, size, 1], strides=[1, size, size, 1], padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def max_pool(inputs, size=-1):
"""max_pool downsamples a feature map."""
if not inputs[1]:
x_input = inputs[0][0]
else:
x_input = sum_op(inputs)
if size in [3, 5, 7]:
return tf.nn.max_pool(x_input, ksize=[1, size, size, 1], strides=[1, size, size, 1], padding='SAME')
else:
raise Exception("Unknown filter size: %d." % size)
def post_process(inputs, ch_size=-1):
"""post_process"""
x_input = inputs[0][0]
bias_matrix = bias_variable([ch_size])
return tf.nn.relu(x_input + bias_matrix)
**Run Neural Network Architecture Search in NNI** **Run Neural Network Architecture Search in NNI**
=== ===
Now we have an NAS example [NNI-NAS-Example](https://github.com/Crysple/NNI-NAS-Example) run in NNI using NAS interface from our contributors. Now we have an NAS example [NNI-NAS-Example](https://github.com/Crysple/NNI-NAS-Example) run in NNI using NAS interface from our contributors.
Thanks our lovely contributors. Thanks our lovely contributors.
And welcome more and more people to join us! And welcome more and more people to join us!
\ No newline at end of file
import numpy as np
from nni.tuner import Tuner
def random_archi_generator(nas_ss, random_state):
'''random
'''
chosen_archi = {}
print("zql: nas search space: ", nas_ss)
for block_name, block in nas_ss.items():
tmp_block = {}
for layer_name, layer in block.items():
tmp_layer = {}
for key, value in layer.items():
if key == 'layer_choice':
index = random_state.randint(len(value))
tmp_layer['chosen_layer'] = value[index]
elif key == 'optional_inputs':
tmp_layer['chosen_inputs'] = []
print("zql: optional_inputs", layer['optional_inputs'])
if layer['optional_inputs']:
if isinstance(layer['optional_input_size'], int):
choice_num = layer['optional_input_size']
else:
choice_range = layer['optional_input_size']
choice_num = random_state.randint(choice_range[0], choice_range[1]+1)
for _ in range(choice_num):
index = random_state.randint(len(layer['optional_inputs']))
tmp_layer['chosen_inputs'].append(layer['optional_inputs'][index])
elif key == 'optional_input_size':
pass
else:
raise ValueError('Unknown field %s in layer %s of block %s' % (key, layer_name, block_name))
tmp_block[layer_name] = tmp_layer
chosen_archi[block_name] = tmp_block
return chosen_archi
class RandomNASTuner(Tuner):
'''RandomNASTuner
'''
def __init__(self):
self.searchspace_json = None
self.random_state = None
def update_search_space(self, search_space):
'''update
'''
self.searchspace_json = search_space
self.random_state = np.random.RandomState()
def generate_parameters(self, parameter_id):
'''generate
'''
return random_archi_generator(self.searchspace_json, self.random_state)
def receive_trial_result(self, parameter_id, parameters, value):
'''receive
'''
pass
...@@ -124,7 +124,7 @@ else: ...@@ -124,7 +124,7 @@ else:
funcs_args, funcs_args,
fixed_inputs, fixed_inputs,
optional_inputs, optional_inputs,
optional_input_size=0): optional_input_size):
'''execute the chosen function and inputs. '''execute the chosen function and inputs.
Below is an example of chosen function and inputs: Below is an example of chosen function and inputs:
{ {
......
...@@ -79,7 +79,7 @@ def parse_annotation_mutable_layers(code, lineno): ...@@ -79,7 +79,7 @@ def parse_annotation_mutable_layers(code, lineno):
fields['optional_inputs'] = True fields['optional_inputs'] = True
elif k.id == 'optional_input_size': elif k.id == 'optional_input_size':
assert not fields['optional_input_size'], 'Duplicated field: optional_input_size' assert not fields['optional_input_size'], 'Duplicated field: optional_input_size'
assert type(value) is ast.Num, 'Value of optional_input_size should be a number' assert type(value) is ast.Num or type(value) is ast.List, 'Value of optional_input_size should be a number or list'
optional_input_size = value optional_input_size = value
fields['optional_input_size'] = True fields['optional_input_size'] = True
elif k.id == 'layer_output': elif k.id == 'layer_output':
...@@ -102,13 +102,14 @@ def parse_annotation_mutable_layers(code, lineno): ...@@ -102,13 +102,14 @@ def parse_annotation_mutable_layers(code, lineno):
if fields['fixed_inputs']: if fields['fixed_inputs']:
target_call_args.append(fixed_inputs) target_call_args.append(fixed_inputs)
else: else:
target_call_args.append(ast.NameConstant(value=None)) target_call_args.append(ast.List(elts=[]))
if fields['optional_inputs']: if fields['optional_inputs']:
target_call_args.append(optional_inputs) target_call_args.append(optional_inputs)
assert fields['optional_input_size'], 'optional_input_size must exist when optional_inputs exists' assert fields['optional_input_size'], 'optional_input_size must exist when optional_inputs exists'
target_call_args.append(optional_input_size) target_call_args.append(optional_input_size)
else: else:
target_call_args.append(ast.NameConstant(value=None)) target_call_args.append(ast.Dict(keys=[], values=[]))
target_call_args.append(ast.Num(n=0))
target_call = ast.Call(func=target_call_attr, args=target_call_args, keywords=[]) target_call = ast.Call(func=target_call_attr, args=target_call_args, keywords=[])
node = ast.Assign(targets=[layer_output], value=target_call) node = ast.Assign(targets=[layer_output], value=target_call)
nodes.append(node) nodes.append(node)
......
...@@ -54,12 +54,14 @@ class SearchSpaceGenerator(ast.NodeTransformer): ...@@ -54,12 +54,14 @@ class SearchSpaceGenerator(ast.NodeTransformer):
def generate_mutable_layer_search_space(self, args): def generate_mutable_layer_search_space(self, args):
mutable_block = args[0].s mutable_block = args[0].s
mutable_layer = args[1].s mutable_layer = args[1].s
if mutable_block not in self.search_space: key = self.module_name + '/' + mutable_block
self.search_space[mutable_block] = dict() args[0].s = key
self.search_space[mutable_block][mutable_layer] = { if key not in self.search_space:
'layer_choice': [key.s for key in args[2].keys], self.search_space[key] = dict()
'optional_inputs': [key.s for key in args[5].keys], self.search_space[key][mutable_layer] = {
'optional_input_size': args[6].n 'layer_choice': [k.s for k in args[2].keys],
'optional_inputs': [k.s for k in args[5].keys],
'optional_input_size': args[6].n if isinstance(args[6], ast.Num) else [args[6].elts[0].n, args[6].elts[1].n]
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment