Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nni
Commits
93c53503
"...src/static/git@developer.sourcefind.cn:OpenDAS/nni.git" did not exist on "45236e18dd70927e5a9e5b59d5fade9f4dd687d0"
Unverified
Commit
93c53503
authored
Sep 06, 2021
by
chenbohua3
Committed by
GitHub
Sep 06, 2021
Browse files
should use .data in quantization wrapper (#4113)
parent
da294255
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
29 additions
and
2 deletions
+29
-2
nni/compression/pytorch/compressor.py
nni/compression/pytorch/compressor.py
+2
-2
test/ut/sdk/test_compressor_torch.py
test/ut/sdk/test_compressor_torch.py
+27
-0
No files found.
nni/compression/pytorch/compressor.py
View file @
93c53503
...
...
@@ -529,13 +529,13 @@ class QuantizerModuleWrapper(torch.nn.Module):
else
:
self
.
module
.
register_parameter
(
'old_weight'
,
torch
.
nn
.
Parameter
(
self
.
module
.
weight
))
delattr
(
self
.
module
,
'weight'
)
self
.
module
.
register_buffer
(
'weight'
,
self
.
module
.
old_weight
)
self
.
module
.
register_buffer
(
'weight'
,
self
.
module
.
old_weight
.
data
)
# for batch normalization folding
if
self
.
bn_module
is
not
None
:
if
_check_bias
(
self
.
module
):
self
.
module
.
register_parameter
(
'old_bias'
,
torch
.
nn
.
Parameter
(
self
.
module
.
bias
))
init_tensor
=
self
.
module
.
old_bias
init_tensor
=
self
.
module
.
old_bias
.
data
else
:
init_tensor
=
torch
.
zeros_like
(
self
.
bn_module
.
weight
)
delattr
(
self
.
module
,
'bias'
)
...
...
test/ut/sdk/test_compressor_torch.py
View file @
93c53503
...
...
@@ -305,6 +305,33 @@ class CompressorTestCase(TestCase):
self
.
assertTrue
(
calibration_config
is
not
None
)
self
.
assertTrue
(
len
(
calibration_config
)
==
4
)
def
test_torch_quantizer_weight_type
(
self
):
quantizer_list
=
[
torch_quantizer
.
QAT_Quantizer
,
torch_quantizer
.
LsqQuantizer
,
torch_quantizer
.
ObserverQuantizer
,
torch_quantizer
.
NaiveQuantizer
,
torch_quantizer
.
DoReFaQuantizer
]
for
quantizer_type
in
quantizer_list
:
model
=
TorchModel
().
eval
()
config_list
=
[{
'quant_types'
:
[
'weight'
],
'quant_bits'
:
8
,
'op_types'
:
[
'Conv2d'
,
'Linear'
]
}]
optimizer
=
torch
.
optim
.
SGD
(
model
.
parameters
(),
lr
=
0.01
,
momentum
=
0.5
)
dummy
=
torch
.
randn
(
1
,
1
,
28
,
28
)
if
quantizer_type
==
torch_quantizer
.
QAT_Quantizer
:
quantizer_type
(
model
,
config_list
,
optimizer
,
dummy_input
=
dummy
)
else
:
quantizer_type
(
model
,
config_list
,
optimizer
)
self
.
assertFalse
(
isinstance
(
model
.
conv1
.
module
.
weight
,
torch
.
nn
.
Parameter
))
self
.
assertFalse
(
isinstance
(
model
.
conv2
.
module
.
weight
,
torch
.
nn
.
Parameter
))
self
.
assertFalse
(
isinstance
(
model
.
fc1
.
module
.
weight
,
torch
.
nn
.
Parameter
))
self
.
assertFalse
(
isinstance
(
model
.
fc2
.
module
.
weight
,
torch
.
nn
.
Parameter
))
def
test_torch_QAT_quantizer
(
self
):
model
=
TorchModel
()
config_list
=
[{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment