基于顺序模型的全局优化(SMBO)算法已经用于许多应用中,但适应度函数的评估成本比较高。 在应用中,真实的适应度函数 f: X → R 评估成本较高,通过采用基于模型算法近似的 f 来替代,可降低其评估成本。 通常,在 SMBO 算法内层循环是用数值优化或其它转换方式来替代。 点 x* 最大化的替代项(或它的转换形式)作为真实函数 f 评估的替代值。 这种类似于主动学习的算法模板总结如下。 SMBO 算法的不同之处在于,给定一个 f 的模型(或替代项)的情况下,获得 x* 的优化的标准,以及通过观察历史 H 来模拟 f。
.. image:: ../../img/parallel_tpe_search4.PNG
:target: ../../img/parallel_tpe_search4.PNG
:alt:
本算法优化了预期改进(Expected Improvement,EI)的标准。 其它建议的标准包括,概率改进(Probability of Improvement)、预期改进(Expected Improvement)最小化条件熵(minimizing the Conditional Entropy of the Minimizer)、以及 bandit-based 的标准。 在 TPE 中考虑到直观,选择了 EI,其在多种设置下都展示了较好的效果。 预期改进(EI)是在模型 M 下,当 f(x) (负向)超过某个阈值 y* 时,对 f 的预期:X → RN。
[3] M. Jordan, J. Kleinberg, B. Scho¨lkopf. `Pattern Recognition and Machine Learning. <http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf>`__