@@ -588,3 +589,35 @@ We try to reproduce the experiment result of the fully connected network on MNIS

The above figure shows the result of the fully connected network. `round0-sparsity-0.0` is the performance without pruning. Consistent with the paper, pruning around 80% also obtain similar performance compared to non-pruning, and converges a little faster. If pruning too much, e.g., larger than 94%, the accuracy becomes lower and convergence becomes a little slower. A little different from the paper, the trend of the data in the paper is relatively more clear.
## Sensitivity Pruner
For each round, SensitivityPruner prunes the model based on the sensitivity to the accuracy of each layer until meeting the final configured sparsity of the whole model:
1. Analyze the sensitivity of each layer in the current state of the model.
2. Prune each layer according to the sensitivity.
For more details, please refer to [Learning both Weights and Connections for Efficient Neural Networks ](https://arxiv.org/abs/1506.02626).