To imporve the reproducibility of NAS algorithms as well as reducing computing resource requirements, researchers proposed a series of NAS benchmarks such as [NAS-Bench-101](https://arxiv.org/abs/1902.09635), [NAS-Bench-201](https://arxiv.org/abs/2001.00326), [NDS](https://arxiv.org/abs/1905.13214), etc. NNI provides a query interface for users to acquire these benchmarks. Within just a few lines of code, researcher are able to evaluate their NAS algorithms easily and fairly by utilizing these benchmarks.
To imporve the reproducibility of NAS algorithms as well as reducing computing resource requirements, researchers proposed a series of NAS benchmarks such as [NAS-Bench-101](https://arxiv.org/abs/1902.09635), [NAS-Bench-201](https://arxiv.org/abs/2001.00326), [NDS](https://arxiv.org/abs/1905.13214), [NLP](https://arxiv.org/abs/2006.07116), etc. NNI provides a query interface for users to acquire these benchmarks. Within just a few lines of code, researcher are able to evaluate their NAS algorithms easily and fairly by utilizing these benchmarks.
## Prerequisites
...
...
@@ -27,7 +29,7 @@ cd nni/examples/nas/benchmarks
```
Replace `${NNI_VERSION}` with a released version name or branch name, e.g., `v1.9`.
2. Install dependencies via `pip3 install -r xxx.requirements.txt`. `xxx` can be `nasbench101`, `nasbench201` or `nds`.
2. Install dependencies via `pip3 install -r xxx.requirements.txt`. `xxx` can be `nasbench101`, `nasbench201`, `nds` or `nlp`.
3. Generate the database via `./xxx.sh`. The directory that stores the benchmark file can be configured with `NASBENCHMARK_DIR` environment variable, which defaults to `~/.nni/nasbenchmark`. Note that the NAS-Bench-201 dataset will be downloaded from a google drive.
Please make sure there is at least 10GB free disk space and note that the conversion process can take up to hours to complete.
...
...
@@ -109,7 +111,7 @@ _On Network Design Spaces for Visual Recognition_ released trial statistics of o
Instead of storing results obtained with different configurations in separate files, we dump them into one single database to enable comparison in multiple dimensions. Specifically, we use `model_family` to distinguish model types, `model_spec` for all hyper-parameters needed to build this model, `cell_spec` for detailed information on operators and connections if it is a NAS cell, `generator` to denote the sampling policy through which this configuration is generated. Refer to API documentation for details.
## Available Operators
### Available Operators
Here is a list of available operators used in NDS.
...
...
@@ -158,3 +160,22 @@ Here is a list of available operators used in NDS.
The paper "NAS-Bench-NLP: Neural Architecture Search Benchmark for Natural Language Processing" have provided search space of recurrent neural networks on the text datasets and trained 14k architectures within it, and have conducted both intrinsic and extrinsic evaluation of the trained models using datasets for semantic relatedness and language understanding evaluation. There are 2 datasets - PTB and wikitext-2. In the end, the precomputed results(ptb_single_run + ptb_multi_run + wikitext-2) can be utilized.
"for t in query_nb101_trial_stats(arch, 108, include_intermediates=True):\n",
" pprint.pprint(t)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An architecture of NAS-Bench-101 could be trained more than once. Each element of the returned generator is a dict which contains one of the training results of this trial config (architecture + hyper-parameters) including train/valid/test accuracy, training time, number of epochs, etc. The results of NAS-Bench-201 and NDS follow similar formats."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## NAS-Bench-201"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Use the following architecture as an example:\n",
"Use the following architecture as an example:<br>\n",
"\n",
"\n",
"Here, `bot_muls`, `ds`, `num_gs`, `ss` and `ws` stand for \"bottleneck multipliers\", \"depths\", \"number of groups\", \"strides\" and \"widths\" respectively."
"for t in query_nds_trial_stats('residual_basic', 'resnet', 'random', model_spec, {}, 'cifar10'):\n",
" pprint.pprint(t)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"tags": []
},
"outputs": [
"cell_type": "markdown",
"metadata": {},
"source": [
"An architecture of NAS-Bench-101 could be trained more than once. Each element of the returned generator is a dict which contains one of the training results of this trial config (architecture + hyper-parameters) including train/valid/test accuracy, training time, number of epochs, etc. The results of NAS-Bench-201 and NDS follow similar formats."
"Use the following architecture as an example:<br>\n",
"\n",
"\n",
"Here, `bot_muls`, `ds`, `num_gs`, `ss` and `ws` stand for \"bottleneck multipliers\", \"depths\", \"number of groups\", \"strides\" and \"widths\" respectively."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"model_spec = {\n",
" 'bot_muls': [0.0, 0.25, 0.25, 0.25],\n",
" 'ds': [1, 16, 1, 4],\n",
" 'num_gs': [1, 2, 1, 2],\n",
" 'ss': [1, 1, 2, 2],\n",
" 'ws': [16, 64, 128, 16]\n",
"}\n",
"# Use none as a wildcard\n",
"for t in query_nds_trial_stats('residual_bottleneck', None, None, model_spec, None, 'cifar10'):\n",
" pprint.pprint(t)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"model_spec = {\n",
" 'bot_muls': [0.0, 0.25, 0.25, 0.25],\n",
" 'ds': [1, 16, 1, 4],\n",
" 'num_gs': [1, 2, 1, 2],\n",
" 'ss': [1, 1, 2, 2],\n",
" 'ws': [16, 64, 128, 16]\n",
"}\n",
"for t in query_nds_trial_stats('residual_bottleneck', None, None, model_spec, None, 'cifar10', include_intermediates=True):\n",