Unverified Commit 63aa63bd authored by xuehui's avatar xuehui Committed by GitHub
Browse files

Remove unused example (#600)

* update README in metis and update RuntimeError

* remove smart params
parent a18b26f2
authorName: default
experimentName: example_mnist-smartparam
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: local
#choice: true, false
useAnnotation: true
tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
command: python3 mnist.py
codeDir: .
gpuNum: 0
authorName: default
experimentName: example_dist
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai, kubeflow
trainingServicePlatform: kubeflow
#choice: true, false
useAnnotation: true
tuner:
#choice: TPE, Random, Anneal, Evolution
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
codeDir: .
worker:
replicas: 1
command: python3 mnist.py
gpuNum: 0
cpuNum: 1
memoryMB: 8192
image: msranni/nni:latest
kubeflowConfig:
operator: tf-operator
apiVersion: v1alpha2
storage: nfs
nfs:
server: 10.10.10.10
path: /var/nfs/general
\ No newline at end of file
authorName: default
experimentName: example_mnist-smartparam
trialConcurrency: 1
maxExecDuration: 1h
maxTrialNum: 10
#choice: local, remote, pai
trainingServicePlatform: pai
#choice: true, false
useAnnotation: true
tuner:
#choice: TPE, Random, Anneal, Evolution, BatchTuner
#SMAC (SMAC should be installed through nnictl)
builtinTunerName: TPE
classArgs:
#choice: maximize, minimize
optimize_mode: maximize
trial:
command: python3 mnist.py
codeDir: .
gpuNum: 0
cpuNum: 1
memoryMB: 8196
#The docker image to run nni job on pai
image: msranni/nni:latest
#The hdfs directory to store data on pai, format 'hdfs://host:port/directory'
dataDir: hdfs://10.10.10.10:9000/username/nni
#The hdfs directory to store output data generated by nni, format 'hdfs://host:port/directory'
outputDir: hdfs://10.10.10.10:9000/username/nni
paiConfig:
#The username to login pai
userName: username
#The password to login pai
passWord: password
#The host of restful server of pai
host: 10.10.10.10
\ No newline at end of file
"""A deep MNIST classifier using convolutional layers."""
import logging
import math
import tempfile
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import nni
FLAGS = None
logger = logging.getLogger('mnist_AutoML')
class MnistNetwork(object):
'''
MnistNetwork is for initlizing and building basic network for mnist.
'''
def __init__(self,
channel_1_num,
channel_2_num,
pool_size,
x_dim=784,
y_dim=10):
self.channel_1_num = channel_1_num
self.channel_2_num = channel_2_num
self.conv_size = nni.choice(2, 3, 5, 7, name='conv-size')
self.hidden_size = nni.choice(124, 512, 1024) # example: without name
self.pool_size = pool_size
self.learning_rate = nni.uniform(0.0001, 0.1, name='learning_rate')
self.x_dim = x_dim
self.y_dim = y_dim
self.images = tf.placeholder(tf.float32, [None, self.x_dim], name='input_x')
self.labels = tf.placeholder(tf.float32, [None, self.y_dim], name='input_y')
self.keep_prob = tf.placeholder(tf.float32, name='keep_prob')
self.train_step = None
self.accuracy = None
def build_network(self):
'''
Building network for mnist
'''
# Reshape to use within a convolutional neural net.
# Last dimension is for "features" - there is only one here, since images are
# grayscale -- it would be 3 for an RGB image, 4 for RGBA, etc.
with tf.name_scope('reshape'):
try:
input_dim = int(math.sqrt(self.x_dim))
except:
print(
'input dim cannot be sqrt and reshape. input dim: ' + str(self.x_dim))
logger.debug(
'input dim cannot be sqrt and reshape. input dim: %s', str(self.x_dim))
raise
x_image = tf.reshape(self.images, [-1, input_dim, input_dim, 1])
# First convolutional layer - maps one grayscale image to 32 feature maps.
with tf.name_scope('conv1'):
w_conv1 = weight_variable(
[self.conv_size, self.conv_size, 1, self.channel_1_num])
b_conv1 = bias_variable([self.channel_1_num])
h_conv1 = nni.function_choice(
lambda: tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1),
lambda: tf.nn.sigmoid(conv2d(x_image, w_conv1) + b_conv1),
lambda: tf.nn.tanh(conv2d(x_image, w_conv1) + b_conv1)
) # example: without name
# Pooling layer - downsamples by 2X.
with tf.name_scope('pool1'):
h_pool1 = max_pool(h_conv1, self.pool_size)
h_pool1 = nni.function_choice(
lambda: max_pool(h_conv1, self.pool_size),
lambda: avg_pool(h_conv1, self.pool_size),
name='h_pool1')
# Second convolutional layer -- maps 32 feature maps to 64.
with tf.name_scope('conv2'):
w_conv2 = weight_variable([self.conv_size, self.conv_size,
self.channel_1_num, self.channel_2_num])
b_conv2 = bias_variable([self.channel_2_num])
h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
# Second pooling layer.
with tf.name_scope('pool2'): # example: another style
h_pool2 = max_pool(h_conv2, self.pool_size)
# Fully connected layer 1 -- after 2 round of downsampling, our 28x28 image
# is down to 7x7x64 feature maps -- maps this to 1024 features.
last_dim = int(input_dim / (self.pool_size * self.pool_size))
with tf.name_scope('fc1'):
w_fc1 = weight_variable(
[last_dim * last_dim * self.channel_2_num, self.hidden_size])
b_fc1 = bias_variable([self.hidden_size])
h_pool2_flat = tf.reshape(
h_pool2, [-1, last_dim * last_dim * self.channel_2_num])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1)
# Dropout - controls the complexity of the model, prevents co-adaptation of features.
with tf.name_scope('dropout'):
h_fc1_drop = tf.nn.dropout(h_fc1, self.keep_prob)
# Map the 1024 features to 10 classes, one for each digit
with tf.name_scope('fc2'):
w_fc2 = weight_variable([self.hidden_size, self.y_dim])
b_fc2 = bias_variable([self.y_dim])
y_conv = tf.matmul(h_fc1_drop, w_fc2) + b_fc2
with tf.name_scope('loss'):
cross_entropy = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits(labels=self.labels, logits=y_conv))
with tf.name_scope('adam_optimizer'):
self.train_step = tf.train.AdamOptimizer(
self.learning_rate).minimize(cross_entropy)
with tf.name_scope('accuracy'):
correct_prediction = tf.equal(
tf.argmax(y_conv, 1), tf.argmax(self.labels, 1))
self.accuracy = tf.reduce_mean(
tf.cast(correct_prediction, tf.float32))
def conv2d(x_input, w_matrix):
"""conv2d returns a 2d convolution layer with full stride."""
return tf.nn.conv2d(x_input, w_matrix, strides=[1, 1, 1, 1], padding='SAME')
def max_pool(x_input, pool_size):
"""max_pool downsamples a feature map by 2X."""
return tf.nn.max_pool(x_input, ksize=[1, pool_size, pool_size, 1],
strides=[1, pool_size, pool_size, 1], padding='SAME')
def avg_pool(x_input, pool_size):
return tf.nn.avg_pool(x_input, ksize=[1, pool_size, pool_size, 1],
strides=[1, pool_size, pool_size, 1], padding='SAME')
def weight_variable(shape):
"""weight_variable generates a weight variable of a given shape."""
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
"""bias_variable generates a bias variable of a given shape."""
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)
def main(params):
'''
Main function, build mnist network, run and send result to NNI.
'''
# Import data
mnist = input_data.read_data_sets(params['data_dir'], one_hot=True)
print('Mnist download data down.')
logger.debug('Mnist download data down.')
# Create the model
# Build the graph for the deep net
mnist_network = MnistNetwork(channel_1_num=params['channel_1_num'],
channel_2_num=params['channel_2_num'],
pool_size=params['pool_size'])
mnist_network.build_network()
logger.debug('Mnist build network done.')
# Write log
graph_location = tempfile.mkdtemp()
logger.debug('Saving graph to: %s', graph_location)
train_writer = tf.summary.FileWriter(graph_location)
train_writer.add_graph(tf.get_default_graph())
test_acc = 0.0
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
batch_size = nni.choice(1, 4, 8, 16, 32, name='batch_size')
for i in range(2000):
batch = mnist.train.next_batch(batch_size)
dropout_rate = nni.choice(0.5, 0.9, name='dropout_rate')
mnist_network.train_step.run(feed_dict={mnist_network.images: batch[0],
mnist_network.labels: batch[1],
mnist_network.keep_prob: 1 - dropout_rate}
)
if i % 100 == 0:
test_acc = mnist_network.accuracy.eval(
feed_dict={mnist_network.images: mnist.test.images,
mnist_network.labels: mnist.test.labels,
mnist_network.keep_prob: 1.0})
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
test_acc = mnist_network.accuracy.eval(
feed_dict={mnist_network.images: mnist.test.images,
mnist_network.labels: mnist.test.labels,
mnist_network.keep_prob: 1.0})
nni.report_final_result(test_acc)
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')
def generate_defualt_params():
'''
Generate default parameters for mnist network.
'''
params = {
'data_dir': '/tmp/tensorflow/mnist/input_data',
'channel_1_num': 32,
'channel_2_num': 64,
'pool_size': 2}
return params
if __name__ == '__main__':
try:
nni.get_next_parameter()
main(generate_defualt_params())
except Exception as exception:
logger.exception(exception)
raise
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment