This example uses the dataset of digits, which is made up of 1797 8x8 images, and each image is a hand-written digit, the goal is to classify these images into 10 classes.
In this example, we use SVC as the model, and choose some parameters of this model, including `"C", "keral", "degree", "gamma" and "coef0"`. For more information of these parameters, please [refer](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html).
In this example, we use SVC as the model, and choose some parameters of this model, including `"C", "kernel", "degree", "gamma" and "coef0"`. For more information of these parameters, please [refer](https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html).
### 2.2 regression
...
...
@@ -64,7 +64,7 @@ It is easy to use NNI in your scikit-learn code, there are only a few steps.