Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
nni
Commits
4e21e721
Unverified
Commit
4e21e721
authored
Feb 10, 2020
by
Cjkkkk
Committed by
GitHub
Feb 10, 2020
Browse files
update level pruner to adapt to pruner dataparallel refactor (#1993)
parent
d452a166
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
24 additions
and
18 deletions
+24
-18
examples/model_compress/MeanActivation_torch_cifar10.py
examples/model_compress/MeanActivation_torch_cifar10.py
+2
-2
src/sdk/pynni/nni/compression/torch/activation_rank_filter_pruners.py
...i/nni/compression/torch/activation_rank_filter_pruners.py
+11
-4
src/sdk/pynni/nni/compression/torch/compressor.py
src/sdk/pynni/nni/compression/torch/compressor.py
+1
-1
src/sdk/pynni/nni/compression/torch/pruners.py
src/sdk/pynni/nni/compression/torch/pruners.py
+10
-11
No files found.
examples/model_compress/MeanActivation_torch_cifar10.py
View file @
4e21e721
...
@@ -4,7 +4,7 @@ import torch
...
@@ -4,7 +4,7 @@ import torch
import
torch.nn
as
nn
import
torch.nn
as
nn
import
torch.nn.functional
as
F
import
torch.nn.functional
as
F
from
torchvision
import
datasets
,
transforms
from
torchvision
import
datasets
,
transforms
from
nni.compression.torch
import
L1
FilterPruner
from
nni.compression.torch
import
ActivationMeanRank
FilterPruner
from
models.cifar10.vgg
import
VGG
from
models.cifar10.vgg
import
VGG
...
@@ -96,7 +96,7 @@ def main():
...
@@ -96,7 +96,7 @@ def main():
# Prune model and test accuracy without fine tuning.
# Prune model and test accuracy without fine tuning.
print
(
'='
*
10
+
'Test on the pruned model before fine tune'
+
'='
*
10
)
print
(
'='
*
10
+
'Test on the pruned model before fine tune'
+
'='
*
10
)
pruner
=
L1
FilterPruner
(
model
,
configure_list
)
pruner
=
ActivationMeanRank
FilterPruner
(
model
,
configure_list
)
model
=
pruner
.
compress
()
model
=
pruner
.
compress
()
if
args
.
parallel
:
if
args
.
parallel
:
if
torch
.
cuda
.
device_count
()
>
1
:
if
torch
.
cuda
.
device_count
()
>
1
:
...
...
src/sdk/pynni/nni/compression/torch/activation_rank_filter_pruners.py
View file @
4e21e721
...
@@ -32,7 +32,7 @@ class ActivationRankFilterPruner(Pruner):
...
@@ -32,7 +32,7 @@ class ActivationRankFilterPruner(Pruner):
"""
"""
super
().
__init__
(
model
,
config_list
)
super
().
__init__
(
model
,
config_list
)
self
.
register_buffer
(
"if_calculated"
,
torch
.
tensor
(
False
))
# pylint: disable=not-callable
self
.
register_buffer
(
"if_calculated"
,
torch
.
tensor
(
0
))
# pylint: disable=not-callable
self
.
statistics_batch_num
=
statistics_batch_num
self
.
statistics_batch_num
=
statistics_batch_num
self
.
collected_activation
=
{}
self
.
collected_activation
=
{}
self
.
hooks
=
{}
self
.
hooks
=
{}
...
@@ -48,16 +48,23 @@ class ActivationRankFilterPruner(Pruner):
...
@@ -48,16 +48,23 @@ class ActivationRankFilterPruner(Pruner):
"""
"""
Compress the model, register a hook for collecting activations.
Compress the model, register a hook for collecting activations.
"""
"""
if
self
.
modules_wrapper
is
not
None
:
# already compressed
return
self
.
bound_model
else
:
self
.
modules_wrapper
=
[]
modules_to_compress
=
self
.
detect_modules_to_compress
()
modules_to_compress
=
self
.
detect_modules_to_compress
()
for
layer
,
config
in
modules_to_compress
:
for
layer
,
config
in
modules_to_compress
:
self
.
_instrument_layer
(
layer
,
config
)
wrapper
=
self
.
_wrap_modules
(
layer
,
config
)
self
.
modules_wrapper
.
append
(
wrapper
)
self
.
collected_activation
[
layer
.
name
]
=
[]
self
.
collected_activation
[
layer
.
name
]
=
[]
def
_hook
(
module_
,
input_
,
output
,
name
=
layer
.
name
):
def
_hook
(
module_
,
input_
,
output
,
name
=
layer
.
name
):
if
len
(
self
.
collected_activation
[
name
])
<
self
.
statistics_batch_num
:
if
len
(
self
.
collected_activation
[
name
])
<
self
.
statistics_batch_num
:
self
.
collected_activation
[
name
].
append
(
self
.
activation
(
output
.
detach
().
cpu
()))
self
.
collected_activation
[
name
].
append
(
self
.
activation
(
output
.
detach
().
cpu
()))
layer
.
module
.
register_forward_hook
(
_hook
)
wrapper
.
module
.
register_forward_hook
(
_hook
)
self
.
_wrap_model
()
return
self
.
bound_model
return
self
.
bound_model
def
get_mask
(
self
,
base_mask
,
activations
,
num_prune
):
def
get_mask
(
self
,
base_mask
,
activations
,
num_prune
):
...
@@ -103,7 +110,7 @@ class ActivationRankFilterPruner(Pruner):
...
@@ -103,7 +110,7 @@ class ActivationRankFilterPruner(Pruner):
mask
=
self
.
get_mask
(
mask
,
self
.
collected_activation
[
layer
.
name
],
num_prune
)
mask
=
self
.
get_mask
(
mask
,
self
.
collected_activation
[
layer
.
name
],
num_prune
)
finally
:
finally
:
if
len
(
self
.
collected_activation
[
layer
.
name
])
==
self
.
statistics_batch_num
:
if
len
(
self
.
collected_activation
[
layer
.
name
])
==
self
.
statistics_batch_num
:
if_calculated
.
copy_
(
torch
.
tensor
(
True
))
# pylint: disable=not-callable
if_calculated
.
copy_
(
torch
.
tensor
(
1
))
# pylint: disable=not-callable
return
mask
return
mask
...
...
src/sdk/pynni/nni/compression/torch/compressor.py
View file @
4e21e721
...
@@ -89,7 +89,7 @@ class Compressor:
...
@@ -89,7 +89,7 @@ class Compressor:
"""
"""
if
self
.
modules_wrapper
is
not
None
:
if
self
.
modules_wrapper
is
not
None
:
# already compressed
# already compressed
return
return
self
.
bound_model
else
:
else
:
self
.
modules_wrapper
=
[]
self
.
modules_wrapper
=
[]
...
...
src/sdk/pynni/nni/compression/torch/pruners.py
View file @
4e21e721
...
@@ -27,9 +27,9 @@ class LevelPruner(Pruner):
...
@@ -27,9 +27,9 @@ class LevelPruner(Pruner):
"""
"""
super
().
__init__
(
model
,
config_list
)
super
().
__init__
(
model
,
config_list
)
self
.
mask_calculated_ops
=
set
()
self
.
register_buffer
(
"if_calculated"
,
torch
.
tensor
(
0
))
# pylint: disable=not-callable
def
calc_mask
(
self
,
layer
,
config
):
def
calc_mask
(
self
,
layer
,
config
,
**
kwargs
):
"""
"""
Calculate the mask of given layer
Calculate the mask of given layer
Parameters
Parameters
...
@@ -45,8 +45,9 @@ class LevelPruner(Pruner):
...
@@ -45,8 +45,9 @@ class LevelPruner(Pruner):
"""
"""
weight
=
layer
.
module
.
weight
.
data
weight
=
layer
.
module
.
weight
.
data
op_name
=
layer
.
name
if_calculated
=
kwargs
[
"if_calculated"
]
if
op_name
not
in
self
.
mask_calculated_ops
:
if
not
if_calculated
:
w_abs
=
weight
.
abs
()
w_abs
=
weight
.
abs
()
k
=
int
(
weight
.
numel
()
*
config
[
'sparsity'
])
k
=
int
(
weight
.
numel
()
*
config
[
'sparsity'
])
if
k
==
0
:
if
k
==
0
:
...
@@ -54,12 +55,10 @@ class LevelPruner(Pruner):
...
@@ -54,12 +55,10 @@ class LevelPruner(Pruner):
threshold
=
torch
.
topk
(
w_abs
.
view
(
-
1
),
k
,
largest
=
False
)[
0
].
max
()
threshold
=
torch
.
topk
(
w_abs
.
view
(
-
1
),
k
,
largest
=
False
)[
0
].
max
()
mask_weight
=
torch
.
gt
(
w_abs
,
threshold
).
type_as
(
weight
)
mask_weight
=
torch
.
gt
(
w_abs
,
threshold
).
type_as
(
weight
)
mask
=
{
'weight'
:
mask_weight
}
mask
=
{
'weight'
:
mask_weight
}
self
.
mask_dict
.
update
({
op_name
:
mask
})
if_calculated
.
copy_
(
torch
.
tensor
(
1
))
# pylint: disable=not-callable
self
.
mask_calculated_ops
.
add
(
op_name
)
return
mask
else
:
else
:
assert
op_name
in
self
.
mask_dict
,
"op_name not in the mask_dict"
return
None
mask
=
self
.
mask_dict
[
op_name
]
return
mask
class
AGP_Pruner
(
Pruner
):
class
AGP_Pruner
(
Pruner
):
...
@@ -197,7 +196,7 @@ class SlimPruner(Pruner):
...
@@ -197,7 +196,7 @@ class SlimPruner(Pruner):
all_bn_weights
=
torch
.
cat
(
weight_list
)
all_bn_weights
=
torch
.
cat
(
weight_list
)
k
=
int
(
all_bn_weights
.
shape
[
0
]
*
config
[
'sparsity'
])
k
=
int
(
all_bn_weights
.
shape
[
0
]
*
config
[
'sparsity'
])
self
.
global_threshold
=
torch
.
topk
(
all_bn_weights
.
view
(
-
1
),
k
,
largest
=
False
)[
0
].
max
()
self
.
global_threshold
=
torch
.
topk
(
all_bn_weights
.
view
(
-
1
),
k
,
largest
=
False
)[
0
].
max
()
self
.
register_buffer
(
"if_calculated"
,
torch
.
tensor
(
False
))
# pylint: disable=not-callable
self
.
register_buffer
(
"if_calculated"
,
torch
.
tensor
(
0
))
# pylint: disable=not-callable
def
calc_mask
(
self
,
layer
,
config
,
**
kwargs
):
def
calc_mask
(
self
,
layer
,
config
,
**
kwargs
):
"""
"""
...
@@ -232,7 +231,7 @@ class SlimPruner(Pruner):
...
@@ -232,7 +231,7 @@ class SlimPruner(Pruner):
mask_weight
=
torch
.
gt
(
w_abs
,
self
.
global_threshold
).
type_as
(
weight
)
mask_weight
=
torch
.
gt
(
w_abs
,
self
.
global_threshold
).
type_as
(
weight
)
mask_bias
=
mask_weight
.
clone
()
mask_bias
=
mask_weight
.
clone
()
mask
=
{
'weight'
:
mask_weight
.
detach
(),
'bias'
:
mask_bias
.
detach
()}
mask
=
{
'weight'
:
mask_weight
.
detach
(),
'bias'
:
mask_bias
.
detach
()}
if_calculated
.
copy_
(
torch
.
tensor
(
True
))
# pylint: disable=not-callable
if_calculated
.
copy_
(
torch
.
tensor
(
1
))
# pylint: disable=not-callable
return
mask
return
mask
class
LotteryTicketPruner
(
Pruner
):
class
LotteryTicketPruner
(
Pruner
):
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment