Unverified Commit 41e58703 authored by liuzhe-lz's avatar liuzhe-lz Committed by GitHub
Browse files

Change `receive_customized_trial_result` API (#1491)

* Refactor `receive_customized_trial_result` API

* add doc
parent 15952874
...@@ -171,15 +171,15 @@ class MsgDispatcher(MsgDispatcherBase): ...@@ -171,15 +171,15 @@ class MsgDispatcher(MsgDispatcherBase):
id_ = data['parameter_id'] id_ = data['parameter_id']
value = data['value'] value = data['value']
if id_ in _customized_parameter_ids: if id_ in _customized_parameter_ids:
if multi_phase_enabled(): if not hasattr(self.tuner, '_accept_customized'):
self.tuner.receive_customized_trial_result(id_, _trial_params[id_], value, trial_job_id=data['trial_job_id']) self.tuner._accept_customized = False
else: if not self.tuner._accept_customized:
self.tuner.receive_customized_trial_result(id_, _trial_params[id_], value) _logger.info('Customized trial job %s ignored by tuner', id_)
return
customized = True
else: else:
if multi_phase_enabled(): customized = False
self.tuner.receive_trial_result(id_, _trial_params[id_], value, trial_job_id=data['trial_job_id']) self.tuner.receive_trial_result(id_, _trial_params[id_], value, customized=customized, trial_job_id=data.get('trial_job_id'))
else:
self.tuner.receive_trial_result(id_, _trial_params[id_], value)
def _handle_intermediate_metric_data(self, data): def _handle_intermediate_metric_data(self, data):
"""Call assessor to process intermediate results """Call assessor to process intermediate results
......
...@@ -57,19 +57,22 @@ class Tuner(Recoverable): ...@@ -57,19 +57,22 @@ class Tuner(Recoverable):
def receive_trial_result(self, parameter_id, parameters, value, **kwargs): def receive_trial_result(self, parameter_id, parameters, value, **kwargs):
"""Invoked when a trial reports its final result. Must override. """Invoked when a trial reports its final result. Must override.
By default this only reports results of algorithm-generated hyper-parameters.
Use `accept_customized_trials()` to receive results from user-added parameters.
parameter_id: int parameter_id: int
parameters: object created by 'generate_parameters()' parameters: object created by 'generate_parameters()'
reward: object reported by trial value: object reported by trial
customized: bool, true if the trial is created from web UI, false if generated by algorithm
trial_job_id: str, only available in multiphase mode.
""" """
raise NotImplementedError('Tuner: receive_trial_result not implemented') raise NotImplementedError('Tuner: receive_trial_result not implemented')
def receive_customized_trial_result(self, parameter_id, parameters, value, **kwargs): def accept_customized_trials(self, accept=True):
"""Invoked when a trial added by WebUI reports its final result. Do nothing by default. """Enable or disable receiving results of user-added hyper-parameters.
parameter_id: int By default `receive_trial_result()` will only receive results of algorithm-generated hyper-parameters.
parameters: object created by user If tuners want to receive those of customized parameters as well, they can call this function in `__init__()`.
value: object reported by trial
""" """
_logger.info('Customized trial job %s ignored by tuner', parameter_id) self._accept_customized = accept
def trial_end(self, parameter_id, success, **kwargs): def trial_end(self, parameter_id, success, **kwargs):
"""Invoked when a trial is completed or terminated. Do nothing by default. """Invoked when a trial is completed or terminated. Do nothing by default.
......
...@@ -34,6 +34,7 @@ class NaiveTuner(Tuner): ...@@ -34,6 +34,7 @@ class NaiveTuner(Tuner):
self.param = 0 self.param = 0
self.trial_results = [ ] self.trial_results = [ ]
self.search_space = None self.search_space = None
self.accept_customized_trials()
def generate_parameters(self, parameter_id, **kwargs): def generate_parameters(self, parameter_id, **kwargs):
# report Tuner's internal states to generated parameters, # report Tuner's internal states to generated parameters,
...@@ -45,13 +46,9 @@ class NaiveTuner(Tuner): ...@@ -45,13 +46,9 @@ class NaiveTuner(Tuner):
'search_space': self.search_space 'search_space': self.search_space
} }
def receive_trial_result(self, parameter_id, parameters, value, **kwargs): def receive_trial_result(self, parameter_id, parameters, value, customized, **kwargs):
reward = extract_scalar_reward(value) reward = extract_scalar_reward(value)
self.trial_results.append((parameter_id, parameters['param'], reward, False)) self.trial_results.append((parameter_id, parameters['param'], reward, customized))
def receive_customized_trial_result(self, parameter_id, parameters, value):
reward = extract_scalar_reward(value)
self.trial_results.append((parameter_id, parameters['param'], reward, True))
def update_search_space(self, search_space): def update_search_space(self, search_space):
self.search_space = search_space self.search_space = search_space
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment