Unverified Commit 39cd591b authored by chicm-ms's avatar chicm-ms Committed by GitHub
Browse files

Fix integration tests (#2237)

parent b8d19e45
......@@ -53,13 +53,13 @@ prune_config = {
'op_types': ['Conv2d']
}]
},
'l1': {
'l1filter': {
'dataset_name': 'cifar10',
'model_name': 'vgg16',
'pruner_class': L1FilterPruner,
'config_list': [{
'sparsity': 0.5,
'op_types': ['default'],
'op_types': ['Conv2d'],
'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
}]
},
......@@ -69,7 +69,7 @@ prune_config = {
'pruner_class': ActivationMeanRankFilterPruner,
'config_list': [{
'sparsity': 0.5,
'op_types': ['default'],
'op_types': ['Conv2d'],
'op_names': ['feature.0', 'feature.24', 'feature.27', 'feature.30', 'feature.34', 'feature.37']
}]
},
......
......@@ -25,7 +25,7 @@ config = {
'model_name': 'vgg16',
'device': 'cuda',
'input_shape': [64, 3, 32, 32],
'masks_file': './checkpoints/mask_vgg16_cifar10_l1.pth'
'masks_file': './checkpoints/mask_vgg16_cifar10_l1filter.pth'
},
'fpgm': {
'model_name': 'naive',
......
......@@ -15,14 +15,6 @@ import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
# Temporary patch this example until the MNIST dataset download issue get resolved
# https://github.com/pytorch/vision/issues/1938
import urllib
opener = urllib.request.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
urllib.request.install_opener(opener)
logger = logging.getLogger('mnist_AutoML')
......@@ -48,6 +40,8 @@ class Net(nn.Module):
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if (args['batch_num'] is not None) and batch_idx >= args['batch_num']:
break
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
......@@ -119,16 +113,15 @@ def main(args):
train(args, model, device, train_loader, optimizer, epoch)
test_acc = test(args, model, device, test_loader)
if epoch < args['epochs']:
# report intermediate result
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
else:
# report final result
nni.report_final_result(test_acc)
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')
# report intermediate result
nni.report_intermediate_result(test_acc)
logger.debug('test accuracy %g', test_acc)
logger.debug('Pipe send intermediate result done.')
# report final result
nni.report_final_result(test_acc)
logger.debug('Final result is %g', test_acc)
logger.debug('Send final result done.')
def get_params():
......@@ -138,6 +131,7 @@ def get_params():
default='/tmp/pytorch/mnist/input_data', help="data directory")
parser.add_argument('--batch_size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument("--batch_num", type=int, default=None)
parser.add_argument("--hidden_size", type=int, default=512, metavar='N',
help='hidden layer size (default: 512)')
parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
......@@ -165,6 +159,7 @@ if __name__ == '__main__':
logger.debug(tuner_params)
params = vars(get_params())
params.update(tuner_params)
print(params)
main(params)
except Exception as exception:
logger.exception(exception)
......
authorName: nni
experimentName: default_test
maxExecDuration: 15m
maxTrialNum: 4
maxTrialNum: 2
trialConcurrency: 2
searchSpacePath: ./mnist_pytorch_search_space.json
......@@ -13,7 +13,7 @@ assessor:
optimize_mode: maximize
trial:
codeDir: ../../../examples/trials/mnist-pytorch
command: python3 mnist.py --epochs 1
command: python3 mnist.py --epochs 1 --batch_num 10
gpuNum: 0
useAnnotation: false
......
......@@ -77,16 +77,15 @@ testCases:
kwargs:
expected_result_file: expected_metrics.json
# to be enabled
#- name: metrics-dict
# configFile: test/config/metrics_test/config_dict_metrics.yml
# config:
# maxTrialNum: 1
# trialConcurrency: 1
# validator:
# class: MetricsValidator
# kwargs:
# expected_result_file: expected_metrics_dict.json
- name: metrics-dict
configFile: test/config/metrics_test/config_dict_metrics.yml
config:
maxTrialNum: 1
trialConcurrency: 1
validator:
class: MetricsValidator
kwargs:
expected_result_file: expected_metrics_dict.json
- name: nnicli
configFile: test/config/examples/sklearn-regression.yml
......
......@@ -31,16 +31,15 @@ testCases:
kwargs:
expected_result_file: expected_metrics.json
# to be enabled
#- name: metrics-dict
# configFile: test/config/metrics_test/config_dict_metrics.yml
# config:
# maxTrialNum: 1
# trialConcurrency: 1
# validator:
# class: MetricsValidator
# kwargs:
# expected_result_file: expected_metrics_dict.json
- name: metrics-dict
configFile: test/config/metrics_test/config_dict_metrics.yml
config:
maxTrialNum: 1
trialConcurrency: 1
validator:
class: MetricsValidator
kwargs:
expected_result_file: expected_metrics_dict.json
- name: nnicli
configFile: test/config/examples/sklearn-regression.yml
......
......@@ -35,8 +35,8 @@ class MetricsValidator(ITValidator):
assert len(trial_final_result) == 1, 'there should be 1 final result'
assert trial_final_result[0] == expected_metrics['final_result']
# encode dict/number into json string to compare them in set
assert set([json.dumps(x) for x in trial_intermediate_result]) \
== set([json.dumps(x) for x in expected_metrics['intermediate_result']])
assert set([json.dumps(x, sort_keys=True) for x in trial_intermediate_result]) \
== set([json.dumps(x, sort_keys=True) for x in expected_metrics['intermediate_result']])
def get_metric_results(self, metrics):
intermediate_result = {}
......
......@@ -6,22 +6,14 @@ echo ""
echo "===========================Testing: pruning and speedup==========================="
cd ${CWD}/../examples/model_compress
echo "testing slim pruning and speedup..."
python3 model_prune_torch.py --pruner_name slim --pretrain_epochs 1 --prune_epochs 1
python3 model_speedup.py --example_name slim --model_checkpoint ./checkpoints/pruned_vgg19_cifar10_slim.pth \
--masks_file ./checkpoints/mask_vgg19_cifar10_slim.pth
echo "testing l1 pruning and speedup..."
python3 model_prune_torch.py --pruner_name l1 --pretrain_epochs 1 --prune_epochs 1
python3 model_speedup.py --example_name l1filter --model_checkpoint ./checkpoints/pruned_vgg16_cifar10_l1.pth \
--masks_file ./checkpoints/mask_vgg16_cifar10_l1.pth
echo "testing apoz pruning and speedup..."
python3 model_prune_torch.py --pruner_name apoz --pretrain_epochs 1 --prune_epochs 1
python3 model_speedup.py --example_name apoz --model_checkpoint ./checkpoints/pruned_vgg16_cifar10_apoz.pth \
--masks_file ./checkpoints/mask_vgg16_cifar10_apoz.pth
for name in level fpgm mean_activation
for name in fpgm slim l1filter apoz
do
echo "testing $name pruning and speedup..."
python3 model_prune_torch.py --pruner_name $name --pretrain_epochs 1 --prune_epochs 1
python3 model_speedup.py --example_name $name
done
for name in level mean_activation
do
echo "testing $name pruning..."
python3 model_prune_torch.py --pruner_name $name --pretrain_epochs 1 --prune_epochs 1
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment