@@ -25,7 +25,7 @@ The tool manages automated machine learning (AutoML) experiments, **dispatches a
...
@@ -25,7 +25,7 @@ The tool manages automated machine learning (AutoML) experiments, **dispatches a
* Researchers and data scientists who want to easily **implement and experiement new AutoML algorithms**, may it be: hyperparameter tuning algorithm, neural architect search algorithm or model compression algorithm.
* Researchers and data scientists who want to easily **implement and experiement new AutoML algorithms**, may it be: hyperparameter tuning algorithm, neural architect search algorithm or model compression algorithm.
* ML Platform owners who want to **support AutoML in their platform**.
* ML Platform owners who want to **support AutoML in their platform**.
### **NNI v1.3 has been released! <a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
### **NNI v1.4 has been released! <a href="#nni-released-reminder"><img width="48" src="docs/img/release_icon.png"></a>**
## **NNI capabilities in a glance**
## **NNI capabilities in a glance**
NNI provides CommandLine Tool as well as an user friendly WebUI to manage training experiements. With the extensible API, you can customize your own AutoML algorithms and training services. To make it easy for new users, NNI also provides a set of build-in stat-of-the-art AutoML algorithms and out of box support for popular training platforms.
NNI provides CommandLine Tool as well as an user friendly WebUI to manage training experiements. With the extensible API, you can customize your own AutoML algorithms and training services. To make it easy for new users, NNI also provides a set of build-in stat-of-the-art AutoML algorithms and out of box support for popular training platforms.
...
@@ -233,7 +233,7 @@ The following example is built on TensorFlow 1.x. Make sure **TensorFlow 1.x is
...
@@ -233,7 +233,7 @@ The following example is built on TensorFlow 1.x. Make sure **TensorFlow 1.x is
* Download the examples via clone the source code.
* Download the examples via clone the source code.
@@ -60,4 +60,4 @@ ProxylessNasMutator also implements the forward logic of the mutables (i.e., Lay
...
@@ -60,4 +60,4 @@ ProxylessNasMutator also implements the forward logic of the mutables (i.e., Lay
## Reproduce Results
## Reproduce Results
Ongoing...
To reproduce the result, we first run the search, we found that though it runs many epochs the chosen architecture converges at the first several epochs. This is probably induced by hyper-parameters or the implementation, we are working on it. The test accuracy of the found architecture is top1: 72.31, top5: 90.26.
* Support [C-DARTS](https://github.com/microsoft/nni/blob/v1.4/docs/en_US/NAS/CDARTS.md) algorithm and add [the example](https://github.com/microsoft/nni/tree/v1.4/examples/nas/cdarts) using it
* Support a preliminary version of [ProxylessNAS](https://github.com/microsoft/nni/blob/v1.4/docs/en_US/NAS/Proxylessnas.md) and the corresponding [example](https://github.com/microsoft/nni/tree/v1.4/examples/nas/proxylessnas)
* Add unit tests for the NAS framework
#### Model Compression
* Support DataParallel for compressing models, and provide [an example](https://github.com/microsoft/nni/blob/v1.4/examples/model_compress/multi_gpu.py) of using DataParallel
* Support [model speedup](https://github.com/microsoft/nni/blob/v1.4/docs/en_US/Compressor/ModelSpeedup.md) for compressed models, in Alpha version
#### Training Service
* Support complete PAI configurations by allowing users to specify PAI config file path
* Add example config yaml files for the new PAI mode (i.e., paiK8S)
* Support deleting experiments using sshkey in remote mode (thanks external contributor @tyusr)
#### WebUI
* WebUI refactor: adopt fabric framework
#### Others
* Support running [NNI experiment at foreground](https://github.com/microsoft/nni/blob/v1.4/docs/en_US/Tutorial/Nnictl.md#manage-an-experiment), i.e., `--foreground` argument in `nnictl create/resume/view`
* Support canceling the trials in UNKNOWN state
* Support large search space whose size could be up to 50mb (thanks external contributor @Sundrops)
### Documentation
* Improve [the index structure](https://nni.readthedocs.io/en/latest/) of NNI readthedocs
* Improve [documentation for NAS](https://github.com/microsoft/nni/blob/v1.4/docs/en_US/NAS/NasGuide.md)
* Improve documentation for [the new PAI mode](https://github.com/microsoft/nni/blob/v1.4/docs/en_US/TrainingService/PaiMode.md)
* Add QuickStart guidance for [NAS](https://github.com/microsoft/nni/blob/v1.4/docs/en_US/NAS/QuickStart.md) and [model compression](https://github.com/microsoft/nni/blob/v1.4/docs/en_US/Compressor/QuickStart.md)
* Improve documentation for [the supported EfficientNet](https://github.com/microsoft/nni/blob/v1.4/docs/en_US/TrialExample/EfficientNet.md)
### Bug Fixes
* Correctly support NaN in metric data, JSON compliant
* Fix the out-of-range bug of `randint` type in search space
* Fix the bug of wrong tensor device when exporting onnx model in model compression
* Fix incorrect handling of nnimanagerIP in the new PAI mode (i.e., paiK8S)