This simple annealing algorithm begins by sampling from the prior but tends over time to sample from points closer and closer to the best ones observed. This algorithm is a simple variation on random search that leverages smoothness in the response surface. The annealing rate is not adaptive.
Usage
-----
classArgs Requirements
^^^^^^^^^^^^^^^^^^^^^^
* **optimize_mode** (*maximize or minimize, optional, default = maximize*) - If 'maximize', the tuner will try to maximize metrics. If 'minimize', the tuner will try to minimize metrics.
Batch tuner allows users to simply provide several configurations (i.e., choices of hyper-parameters) for their trial code. After finishing all the configurations, the experiment is done. Batch tuner only supports the type ``choice`` in the `search space spec <../Tutorial/SearchSpaceSpec.rst>`__.
Suggested scenario: If the configurations you want to try have been decided, you can list them in the SearchSpace file (using ``choice``) and run them using the batch tuner.
Usage
-----
Example Configuration
^^^^^^^^^^^^^^^^^^^^^
.. code-block:: yaml
# config.yml
tuner:
name: BatchTuner
Note that the search space for BatchTuner should look like:
The search space file should include the high-level key ``combine_params``. The type of params in the search space must be ``choice`` and the ``values`` must include all the combined params values.
Medianstop is a simple early stopping rule mentioned in this `paper <https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46180.pdf>`__. It stops a pending trial X after step S if the trial’s best objective value by step S is strictly worse than the median value of the running averages of all completed trials’ objectives reported up to step S.
In order to save on computing resources, NNI supports an early stopping policy and has an interface called **Assessor** to do this job.
In HPO, some hyperparameter sets may have obviously poor performance and it will be unnecessary to finish the evaluation.
This is called *early stopping*, and in NNI early stopping algorithms are called *assessors*.
Assessor receives the intermediate result from a trial and decides whether the trial should be killed using a specific algorithm. Once the trial experiment meets the early stopping conditions (which means Assessor is pessimistic about the final results), the assessor will kill the trial and the status of the trial will be `EARLY_STOPPED`.
An assessor monitors *intermediate results* of each *trial*.
If a trial is predicted to produce suboptimal final result, the assessor will stop that trial immediately,
to save computing resources for other hyperparameter sets.
Here is an experimental result of MNIST after using the 'Curvefitting' Assessor in 'maximize' mode. You can see that Assessor successfully **early stopped** many trials with bad hyperparameters in advance. If you use Assessor, you may get better hyperparameters using the same computing resources.
As introduced in quickstart tutorial, a trial is the evaluation process of a hyperparameter set,
and intermediate results are reported with ``nni.report_intermediate_result()`` API in trial code.
Typically, intermediate results are accuracy or loss metrics of each epoch.
- The Tree-structured Parzen Estimator (TPE) is a sequential model-based optimization (SMBO) approach. SMBO methods sequentially construct models to approximate the performance of hyperparameters based on historical measurements, and then subsequently choose new hyperparameters to test based on this model. `Reference Paper <https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf>`__
- The Tree-structured Parzen Estimator (TPE) is a sequential model-based optimization (SMBO) approach. SMBO methods sequentially construct models to approximate the performance of hyperparameters based on historical measurements, and then subsequently choose new hyperparameters to test based on this model. `Reference Paper <https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf>`__
- In Random Search for Hyper-Parameter Optimization show that Random Search might be surprisingly simple and effective. We suggest that we could use Random Search as the baseline when we have no knowledge about the prior distribution of hyper-parameters. `Reference Paper <http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf>`__
- In Random Search for Hyper-Parameter Optimization show that Random Search might be surprisingly simple and effective. We suggest that we could use Random Search as the baseline when we have no knowledge about the prior distribution of hyper-parameters. `Reference Paper <http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf>`__
- This simple annealing algorithm begins by sampling from the prior, but tends over time to sample from points closer and closer to the best ones observed. This algorithm is a simple variation on the random search that leverages smoothness in the response surface. The annealing rate is not adaptive.
- This simple annealing algorithm begins by sampling from the prior, but tends over time to sample from points closer and closer to the best ones observed. This algorithm is a simple variation on the random search that leverages smoothness in the response surface. The annealing rate is not adaptive.
- Naive Evolution comes from Large-Scale Evolution of Image Classifiers. It randomly initializes a population-based on search space. For each generation, it chooses better ones and does some mutation (e.g., change a hyperparameter, add/remove one layer) on them to get the next generation. Naïve Evolution requires many trials to work, but it's very simple and easy to expand new features. `Reference paper <https://arxiv.org/pdf/1703.01041.pdf>`__
- Naive Evolution comes from Large-Scale Evolution of Image Classifiers. It randomly initializes a population-based on search space. For each generation, it chooses better ones and does some mutation (e.g., change a hyperparameter, add/remove one layer) on them to get the next generation. Naïve Evolution requires many trials to work, but it's very simple and easy to expand new features. `Reference paper <https://arxiv.org/pdf/1703.01041.pdf>`__
- SMAC is based on Sequential Model-Based Optimization (SMBO). It adapts the most prominent previously used model class (Gaussian stochastic process models) and introduces the model class of random forests to SMBO, in order to handle categorical parameters. The SMAC supported by NNI is a wrapper on the SMAC3 GitHub repo.
- SMAC is based on Sequential Model-Based Optimization (SMBO). It adapts the most prominent previously used model class (Gaussian stochastic process models) and introduces the model class of random forests to SMBO, in order to handle categorical parameters. The SMAC supported by NNI is a wrapper on the SMAC3 GitHub repo.
Notice, SMAC needs to be installed by ``pip install nni[SMAC]`` command. `Reference Paper, <https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf>`__ `GitHub Repo <https://github.com/automl/SMAC3>`__
Notice, SMAC needs to be installed by ``pip install nni[SMAC]`` command. `Reference Paper, <https://www.cs.ubc.ca/~hutter/papers/10-TR-SMAC.pdf>`__ `GitHub Repo <https://github.com/automl/SMAC3>`__
- Batch tuner allows users to simply provide several configurations (i.e., choices of hyper-parameters) for their trial code. After finishing all the configurations, the experiment is done. Batch tuner only supports the type choice in search space spec.
- Batch tuner allows users to simply provide several configurations (i.e., choices of hyper-parameters) for their trial code. After finishing all the configurations, the experiment is done. Batch tuner only supports the type choice in search space spec.
- Hyperband tries to use limited resources to explore as many configurations as possible and returns the most promising ones as a final result. The basic idea is to generate many configurations and run them for a small number of trials. The half least-promising configurations are thrown out, the remaining are further trained along with a selection of new configurations. The size of these populations is sensitive to resource constraints (e.g. allotted search time). `Reference Paper <https://arxiv.org/pdf/1603.06560.pdf>`__
- Hyperband tries to use limited resources to explore as many configurations as possible and returns the most promising ones as a final result. The basic idea is to generate many configurations and run them for a small number of trials. The half least-promising configurations are thrown out, the remaining are further trained along with a selection of new configurations. The size of these populations is sensitive to resource constraints (e.g. allotted search time). `Reference Paper <https://arxiv.org/pdf/1603.06560.pdf>`__
- Metis offers the following benefits when it comes to tuning parameters: While most tools only predict the optimal configuration, Metis gives you two outputs: (a) current prediction of optimal configuration, and (b) suggestion for the next trial. No more guesswork. While most tools assume training datasets do not have noisy data, Metis actually tells you if you need to re-sample a particular hyper-parameter. `Reference Paper <https://www.microsoft.com/en-us/research/publication/metis-robustly-tuning-tail-latencies-cloud-systems/>`__
- Metis offers the following benefits when it comes to tuning parameters: While most tools only predict the optimal configuration, Metis gives you two outputs: (a) current prediction of optimal configuration, and (b) suggestion for the next trial. No more guesswork. While most tools assume training datasets do not have noisy data, Metis actually tells you if you need to re-sample a particular hyper-parameter. `Reference Paper <https://www.microsoft.com/en-us/research/publication/metis-robustly-tuning-tail-latencies-cloud-systems/>`__
- BOHB is a follow-up work to Hyperband. It targets the weakness of Hyperband that new configurations are generated randomly without leveraging finished trials. For the name BOHB, HB means Hyperband, BO means Bayesian Optimization. BOHB leverages finished trials by building multiple TPE models, a proportion of new configurations are generated through these models. `Reference Paper <https://arxiv.org/abs/1807.01774>`__
- BOHB is a follow-up work to Hyperband. It targets the weakness of Hyperband that new configurations are generated randomly without leveraging finished trials. For the name BOHB, HB means Hyperband, BO means Bayesian Optimization. BOHB leverages finished trials by building multiple TPE models, a proportion of new configurations are generated through these models. `Reference Paper <https://arxiv.org/abs/1807.01774>`__
- Gaussian Process Tuner is a sequential model-based optimization (SMBO) approach with Gaussian Process as the surrogate. `Reference Paper <https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf>`__, `Github Repo <https://github.com/fmfn/BayesianOptimization>`__
- Gaussian Process Tuner is a sequential model-based optimization (SMBO) approach with Gaussian Process as the surrogate. `Reference Paper <https://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf>`__, `Github Repo <https://github.com/fmfn/BayesianOptimization>`__
- PBT Tuner is a simple asynchronous optimization algorithm which effectively utilizes a fixed computational budget to jointly optimize a population of models and their hyperparameters to maximize performance. `Reference Paper <https://arxiv.org/abs/1711.09846v1>`__
- PBT Tuner is a simple asynchronous optimization algorithm which effectively utilizes a fixed computational budget to jointly optimize a population of models and their hyperparameters to maximize performance. `Reference Paper <https://arxiv.org/abs/1711.09846v1>`__