通过对搜索空间格式和体系结构选择 (choice) 表达式的说明,可以自由地在 NNI 上实现神经体系结构搜索的各种或通用的调优算法。 接下来的工作会提供一个通用的 NAS 算法。
## 支持 One-Shot NAS
One-Shot NAS 是流行的,能在有限的时间和资源预算内找到较好的神经网络结构的方法。 本质上,它会基于搜索空间来构建完整的图,并使用梯度下降最终找到最佳子图。 它有不同的训练方法,如:[training subgraphs (per mini-batch)](https://arxiv.org/abs/1802.03268) ,[training full graph through dropout](http://proceedings.mlr.press/v80/bender18a/bender18a.pdf),以及 [training with architecture weights (regularization)](https://arxiv.org/abs/1806.09055) 。
如上所示,NNI 支持通用的 NAS。 从用户角度来看,One-Shot NAS 和 NAS 具有相同的搜索空间规范,因此,它们可以使用相同的编程接口,只是在训练模式上有所不同。 NNI 提供了四种训练模式:
***classic_mode***: [上文](#ProgInterface)对此模式有相应的描述,每个子图是一个 Trial 任务。 要使用此模式,需要启用 NNI Annotation,并在 Experiment 配置文件中为 NAS 指定一个 Tuner。 [这里](https://github.com/microsoft/nni/tree/master/examples/trials/mnist-nas)是如何实现 Trial 和配置文件的例子。 [这里](https://github.com/microsoft/nni/tree/master/examples/tuners/random_nas_tuner)是一个简单的 NAS Tuner。
我们很高兴的宣布,基于 NNI 的模型压缩工具发布了 Alpha 版本。该版本仍处于试验阶段,根据用户反馈会进行改进。 诚挚邀请您使用、反馈,或更多贡献。
我们很高兴的宣布,基于 NNI 的模型压缩工具发布了试用版本。该版本仍处于试验阶段,根据用户反馈会进行改进。 诚挚邀请您使用、反馈,或有更多贡献。
NNI 提供了易于使用的工具包来帮助用户设计并使用压缩算法。 其使用了统一的接口来支持 TensorFlow 和 PyTorch。 只需要添加几行代码即可压缩模型。 NNI 中也内置了一些流程的模型压缩算法。 用户还可以通过 NNI 强大的自动调参功能来找到最好的压缩后的模型,详见[自动模型压缩](./AutoCompression.md)。 另外,用户还能使用 NNI 的接口,轻松定制新的压缩算法,详见[教程](#customize-new-compression-algorithms)。
NNI 提供了易于使用的工具包来帮助用户设计并使用压缩算法。 当前支持基于 PyTorch 的统一接口。 只需要添加几行代码即可压缩模型。 NNI 中也内置了一些流程的模型压缩算法。 用户还可以通过 NNI 强大的自动调参功能来找到最好的压缩后的模型,详见[自动模型压缩](./AutoCompression.md)。 另外,用户还能使用 NNI 的接口,轻松定制新的压缩算法,详见[教程](#customize-new-compression-algorithms)。
模型压缩方面的综述可参考:[Recent Advances in Efficient Computation of Deep Convolutional Neural Networks](https://arxiv.org/pdf/1802.00939.pdf)。
| [FPGM Pruner](./Pruner.md#fpgm-pruner) | Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration [参考论文](https://arxiv.org/pdf/1811.00250.pdf) |
| [FPGM Pruner](./Pruner.md#fpgm-pruner) | Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration [参考论文](https://arxiv.org/pdf/1811.00250.pdf) |
这是一种一次性的 Pruner,FPGM Pruner 是论文 [Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration](https://arxiv.org/pdf/1811.00250.pdf) 的实现
具有最小几何中位数的 FPGMPruner 修剪过滤器

> 以前的方法使用 “smaller-norm-less-important” 准则来修剪卷积神经网络中规范值较小的。 本文中,分析了基于规范的准则,并指出其所依赖的两个条件不能总是满足:(1) 过滤器的规范偏差应该较大;(2) 过滤器的最小规范化值应该很小。 为了解决此问题,提出了新的过滤器修建方法,即 Filter Pruning via Geometric Median (FPGM),可不考虑这两个要求来压缩模型。 与以前的方法不同,FPGM 通过修剪冗余的,而不是相关性更小的部分来压缩 CNN 模型。
这是一种一次性的 Pruner,由 ['PRUNING FILTERS FOR EFFICIENT CONVNETS'](https://arxiv.org/abs/1608.08710) 提出,作者 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet 和 Hans Peter Graf。
这是一种一次性的 Pruner,由 ['PRUNING FILTERS FOR EFFICIENT CONVNETS'](https://arxiv.org/abs/1608.08710) 提出,作者 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet 和 Hans Peter Graf。[重现的实验结果](l1filterpruner.md)
我们实现了 [Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1](https://arxiv.org/abs/1602.02830) 中的一个实验,对 CIFAR-10 上的 **VGGNet** 进行了量化操作。 我们的实验结果如下:
2. 在神经网络上应用 NAS 时,需要统一的方式来表达架构的搜索空间,这样不必为不同的搜索算法来更改代码。
NNI 提出的 API 在[这里](https://github.com/microsoft/nni/tree/master/src/sdk/pynni/nni/nas/pytorch)。 [这里](https://github.com/microsoft/nni/tree/master/examples/nas/darts)包含了基于此 API 的 NAS 实现示例。
* 可选。在使用 pai 模式时,为私有 Docker 仓库设置认证文件,[见参考文档](https://github.com/microsoft/pai/blob/2ea69b45faa018662bc164ed7733f6fdbb4c42b3/docs/faq.md#q-how-to-use-private-docker-registry-job-image-when-submitting-an-openpai-job)。提供 authFile 的本地路径即可, NNI 会上传此文件。