@@ -14,7 +14,7 @@ There are two types of pruning. One is fine-grained pruning, it does not change
...
@@ -14,7 +14,7 @@ There are two types of pruning. One is fine-grained pruning, it does not change
## Design and Implementation
## Design and Implementation
To speed up a model, the pruned layers should be replaced, either replaced with smaller layer for coarse-grained mask, or replaced with sparse kernel for fine-grained mask. Coarse-grained mask usually changes the shape of weights or input/output tensors, thus, we should do shape inference to check are there other unpruned layers should be replaced as well due to shape change. Therefore, in our design, there are two main steps: first, do shape inference to find out all the modules that should be replaced; second, replace the modules. The first step requires topology (i.e., connections) of the model, we use `jit.trace` to obtain the model grpah for PyTorch.
To speed up a model, the pruned layers should be replaced, either replaced with smaller layer for coarse-grained mask, or replaced with sparse kernel for fine-grained mask. Coarse-grained mask usually changes the shape of weights or input/output tensors, thus, we should do shape inference to check are there other unpruned layers should be replaced as well due to shape change. Therefore, in our design, there are two main steps: first, do shape inference to find out all the modules that should be replaced; second, replace the modules. The first step requires topology (i.e., connections) of the model, we use `jit.trace` to obtain the model graph for PyTorch.
For each module, we should prepare four functions, three for shape inference and one for module replacement. The three shape inference functions are: given weight shape infer input/output shape, given input shape infer weight/output shape, given output shape infer weight/input shape. The module replacement function returns a newly created module which is smaller.
For each module, we should prepare four functions, three for shape inference and one for module replacement. The three shape inference functions are: given weight shape infer input/output shape, given input shape infer weight/output shape, given output shape infer weight/input shape. The module replacement function returns a newly created module which is smaller.