quantization_quick_start_mnist.rst 7.95 KB
Newer Older
J-shang's avatar
J-shang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/quantization_quick_start_mnist.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_tutorials_quantization_quick_start_mnist.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_tutorials_quantization_quick_start_mnist.py:


Quantization Quickstart
=======================

Quantization reduces model size and speeds up inference time by reducing the number of bits required to represent weights or activations.

In NNI, both post-training quantization algorithms and quantization-aware training algorithms are supported.
Here we use `QAT_Quantizer` as an example to show the usage of quantization in NNI.

.. GENERATED FROM PYTHON SOURCE LINES 12-17

Preparation
-----------

In this tutorial, we use a simple model and pre-train on MNIST dataset.
If you are familiar with defining a model and training in pytorch, you can skip directly to `Quantizing Model`_.

.. GENERATED FROM PYTHON SOURCE LINES 17-37

.. code-block:: default


    import torch
    import torch.nn.functional as F
    from torch.optim import SGD

46
    from scripts.compression_mnist_model import TorchModel, trainer, evaluator, device, test_trt
J-shang's avatar
J-shang committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

    # define the model
    model = TorchModel().to(device)

    # define the optimizer and criterion for pre-training

    optimizer = SGD(model.parameters(), 1e-2)
    criterion = F.nll_loss

    # pre-train and evaluate the model on MNIST dataset
    for epoch in range(3):
        trainer(model, optimizer, criterion)
        evaluator(model)





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

71
72
73
    Average test loss: 0.7073, Accuracy: 7624/10000 (76%)
    Average test loss: 0.2776, Accuracy: 9122/10000 (91%)
    Average test loss: 0.1907, Accuracy: 9412/10000 (94%)
J-shang's avatar
J-shang committed
74
75
76
77




78
.. GENERATED FROM PYTHON SOURCE LINES 38-43
J-shang's avatar
J-shang committed
79
80
81
82
83

Quantizing Model
----------------

Initialize a `config_list`.
84
Detailed about how to write ``config_list`` please refer :doc:`compression config specification <../compression/compression_config_list>`.
J-shang's avatar
J-shang committed
85

86
.. GENERATED FROM PYTHON SOURCE LINES 43-58
J-shang's avatar
J-shang committed
87
88
89
90
91
92
93

.. code-block:: default


    config_list = [{
        'quant_types': ['input', 'weight'],
        'quant_bits': {'input': 8, 'weight': 8},
94
        'op_types': ['Conv2d']
J-shang's avatar
J-shang committed
95
96
97
    }, {
        'quant_types': ['output'],
        'quant_bits': {'output': 8},
98
        'op_types': ['ReLU']
J-shang's avatar
J-shang committed
99
100
101
    }, {
        'quant_types': ['input', 'weight'],
        'quant_bits': {'input': 8, 'weight': 8},
102
        'op_names': ['fc1', 'fc2']
J-shang's avatar
J-shang committed
103
104
105
106
107
108
109
110
111
    }]








112
.. GENERATED FROM PYTHON SOURCE LINES 59-60
J-shang's avatar
J-shang committed
113
114
115

finetuning the model by using QAT

116
.. GENERATED FROM PYTHON SOURCE LINES 60-65
J-shang's avatar
J-shang committed
117
118
119
120
121
122
123

.. code-block:: default

    from nni.algorithms.compression.pytorch.quantization import QAT_Quantizer
    dummy_input = torch.rand(32, 1, 28, 28).to(device)
    quantizer = QAT_Quantizer(model, config_list, optimizer, dummy_input)
    quantizer.compress()
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none


    TorchModel(
      (conv1): QuantizerModuleWrapper(
        (module): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
      )
      (conv2): QuantizerModuleWrapper(
        (module): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
      )
143
144
145
146
147
148
      (fc1): QuantizerModuleWrapper(
        (module): Linear(in_features=256, out_features=120, bias=True)
      )
      (fc2): QuantizerModuleWrapper(
        (module): Linear(in_features=120, out_features=84, bias=True)
      )
149
      (fc3): Linear(in_features=84, out_features=10, bias=True)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
      (relu1): QuantizerModuleWrapper(
        (module): ReLU()
      )
      (relu2): QuantizerModuleWrapper(
        (module): ReLU()
      )
      (relu3): QuantizerModuleWrapper(
        (module): ReLU()
      )
      (relu4): QuantizerModuleWrapper(
        (module): ReLU()
      )
      (pool1): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
      (pool2): MaxPool2d(kernel_size=(2, 2), stride=(2, 2), padding=0, dilation=1, ceil_mode=False)
164
165
166
167
    )



168
.. GENERATED FROM PYTHON SOURCE LINES 66-69
169
170
171
172
173

The model has now been wrapped, and quantization targets ('quant_types' setting in `config_list`)
will be quantized & dequantized for simulated quantization in the wrapped layers.
QAT is a training-aware quantizer, it will update scale and zero point during training.

174
.. GENERATED FROM PYTHON SOURCE LINES 69-74
175
176
177
178

.. code-block:: default


J-shang's avatar
J-shang committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
    for epoch in range(3):
        trainer(model, optimizer, criterion)
        evaluator(model)





.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

193
194
195
    Average test loss: 0.1542, Accuracy: 9529/10000 (95%)
    Average test loss: 0.1133, Accuracy: 9664/10000 (97%)
    Average test loss: 0.0919, Accuracy: 9726/10000 (97%)
J-shang's avatar
J-shang committed
196
197
198
199




200
.. GENERATED FROM PYTHON SOURCE LINES 75-76
J-shang's avatar
J-shang committed
201
202
203

export model and get calibration_config

204
.. GENERATED FROM PYTHON SOURCE LINES 76-82
J-shang's avatar
J-shang committed
205
206
207
208
209
210
211
212
213
214
215
216

.. code-block:: default

    model_path = "./log/mnist_model.pth"
    calibration_path = "./log/mnist_calibration.pth"
    calibration_config = quantizer.export_model(model_path, calibration_path)

    print("calibration_config: ", calibration_config)




217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

    calibration_config:  {'conv1': {'weight_bits': 8, 'weight_scale': tensor([0.0031], device='cuda:0'), 'weight_zero_point': tensor([76.], device='cuda:0'), 'input_bits': 8, 'tracked_min_input': -0.4242129623889923, 'tracked_max_input': 2.821486711502075}, 'conv2': {'weight_bits': 8, 'weight_scale': tensor([0.0018], device='cuda:0'), 'weight_zero_point': tensor([113.], device='cuda:0'), 'input_bits': 8, 'tracked_min_input': 0.0, 'tracked_max_input': 12.42452621459961}, 'fc1': {'weight_bits': 8, 'weight_scale': tensor([0.0011], device='cuda:0'), 'weight_zero_point': tensor([124.], device='cuda:0'), 'input_bits': 8, 'tracked_min_input': 0.0, 'tracked_max_input': 31.650196075439453}, 'fc2': {'weight_bits': 8, 'weight_scale': tensor([0.0013], device='cuda:0'), 'weight_zero_point': tensor([122.], device='cuda:0'), 'input_bits': 8, 'tracked_min_input': 0.0, 'tracked_max_input': 25.805370330810547}, 'relu1': {'output_bits': 8, 'tracked_min_output': 0.0, 'tracked_max_output': 12.499907493591309}, 'relu2': {'output_bits': 8, 'tracked_min_output': 0.0, 'tracked_max_output': 32.0243034362793}, 'relu3': {'output_bits': 8, 'tracked_min_output': 0.0, 'tracked_max_output': 26.491384506225586}, 'relu4': {'output_bits': 8, 'tracked_min_output': 0.0, 'tracked_max_output': 17.662996292114258}}




.. GENERATED FROM PYTHON SOURCE LINES 83-84

build tensorRT engine to make a real speedup, for more information about speedup, please refer :doc:`quantization_speedup`.

.. GENERATED FROM PYTHON SOURCE LINES 84-90

.. code-block:: default


    from nni.compression.pytorch.quantization_speedup import ModelSpeedupTensorRT
    input_shape = (32, 1, 28, 28)
    engine = ModelSpeedupTensorRT(model, input_shape, config=calibration_config, batchsize=32)
    engine.compress()
    test_trt(engine)




J-shang's avatar
J-shang committed
247
248
249
250
251
252
.. rst-class:: sphx-glr-script-out

 Out:

 .. code-block:: none

253
254
    Loss: 0.09358334274291992  Accuracy: 97.21%
    Inference elapsed_time (whole dataset): 0.04445981979370117s
J-shang's avatar
J-shang committed
255
256
257
258
259
260
261





.. rst-class:: sphx-glr-timing

262
   **Total running time of the script:** ( 1 minutes  36.499 seconds)
J-shang's avatar
J-shang committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290


.. _sphx_glr_download_tutorials_quantization_quick_start_mnist.py:


.. only :: html

 .. container:: sphx-glr-footer
    :class: sphx-glr-footer-example



  .. container:: sphx-glr-download sphx-glr-download-python

     :download:`Download Python source code: quantization_quick_start_mnist.py <quantization_quick_start_mnist.py>`



  .. container:: sphx-glr-download sphx-glr-download-jupyter

     :download:`Download Jupyter notebook: quantization_quick_start_mnist.ipynb <quantization_quick_start_mnist.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_