mnist.py 5.99 KB
Newer Older
1
2
3
'''
mnist.py is an example to show: how to use iterative search space to tune architecture network for mnist.
'''
4
from __future__ import absolute_import, division, print_function
5
6
7
8

import logging
import math
import tempfile
9
import time
10

11
import tensorflow as tf
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
from tensorflow.examples.tutorials.mnist import input_data

import nni

logger = logging.getLogger('mnist_cascading_search_space')
FLAGS = None

class MnistNetwork(object):
    def __init__(self, params, feature_size = 784):
        config = []

        for i in range(10):
            config.append(params['layer'+str(i)])
        self.config = config
        self.feature_size = feature_size
        self.label_size = 10


    def is_expand_dim(self, input):
        # input is a tensor
        shape = len(input.get_shape().as_list())
        if shape < 4:
            return True
        return False


    def is_flatten(self, input):
        # input is a tensor
        shape = len(input.get_shape().as_list())
        if shape > 2:
            return True
        return False


    def get_layer(self, layer_config, input, in_height, in_width, id):
        if layer_config[0] == 'Empty':
            return input

        if self.is_expand_dim(input):
            input = tf.reshape(input, [-1, in_height, in_width, 1])
        h, w = layer_config[1], layer_config[2]

        if layer_config[0] == 'Conv':
            conv_filter = tf.Variable(tf.random_uniform([h, w, 1, 1]), name='id_%d_conv_%d_%d' % (id, h, w))
            return tf.nn.conv2d(input, filter=conv_filter, strides=[1, 1, 1, 1], padding='SAME')
        if layer_config[0] == 'Max_pool':
            return tf.nn.max_pool(input, ksize=[1, h, w, 1], strides=[1, 1, 1, 1], padding='SAME')
        if layer_config[0] == 'Avg_pool':
            return tf.nn.avg_pool(input, ksize=[1, h, w, 1], strides=[1, 1, 1, 1], padding='SAME')

        print('error:', layer_config)
        raise Exception('%s layer is illegal'%layer_config[0])


    def build_network(self):
        layer_configs = self.config
        feature_size = 784

        # define placeholder
        self.x = tf.placeholder(tf.float32, [None, feature_size], name="input_x")
        self.y = tf.placeholder(tf.int32, [None, self.label_size], name="input_y")
        label_number = 10

        # define network
        input_layer = self.x
        in_height = in_width = int(math.sqrt(feature_size))
        for i, layer_config in enumerate(layer_configs):
            input_layer = tf.nn.relu(self.get_layer(layer_config, input_layer, in_height, in_width, i))

        output_layer = input_layer
        if self.is_flatten(output_layer):
            output_layer = tf.contrib.layers.flatten(output_layer)  # flatten
        output_layer = tf.layers.dense(output_layer, label_number)
        child_logit = tf.nn.softmax_cross_entropy_with_logits(logits=output_layer, labels=self.y)
        child_loss = tf.reduce_mean(child_logit)

        self.train_step = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(child_loss)
        child_accuracy = tf.equal(tf.argmax(output_layer, 1), tf.argmax(self.y, 1))
        self.accuracy = tf.reduce_mean(tf.cast(child_accuracy, "float"))  # add a reduce_mean

92
93
94
95
96
97
98
99
100
def download_mnist_retry(data_dir, max_num_retries=20):
    """Try to download mnist dataset and avoid errors"""
    for _ in range(max_num_retries):
        try:
            return input_data.read_data_sets(data_dir, one_hot=True)
        except tf.errors.AlreadyExistsError:
            time.sleep(1)
    raise Exception("Failed to download MNIST.")

101
102
def main(params):
    # Import data
103
104
    mnist = download_mnist_retry(params['data_dir'])

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    # Create the model
    # Build the graph for the deep net
    mnist_network = MnistNetwork(params)
    mnist_network.build_network()
    print('build network done.')

    # Write log
    graph_location = tempfile.mkdtemp()
    #print('Saving graph to: %s' % graph_location)
    train_writer = tf.summary.FileWriter(graph_location)
    train_writer.add_graph(tf.get_default_graph())

    test_acc = 0.0
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(params['batch_num']):
            batch = mnist.train.next_batch(params['batch_size'])
            mnist_network.train_step.run(feed_dict={mnist_network.x: batch[0], mnist_network.y: batch[1]})
123
            
124
125
126
127
            if i % 100 == 0:
                train_accuracy = mnist_network.accuracy.eval(feed_dict={
                    mnist_network.x: batch[0], mnist_network.y: batch[1]})
                print('step %d, training accuracy %g' % (i, train_accuracy))
128

129
130
        test_acc = mnist_network.accuracy.eval(feed_dict={
            mnist_network.x: mnist.test.images, mnist_network.y: mnist.test.labels})
131

132
133
        nni.report_final_result(test_acc)

Lee's avatar
Lee committed
134
135
136
137
138
139
140
141
def get_params():
    ''' Get parameters from command line '''
    parser = argparse.ArgumentParser()
    parser.add_argument("--data_dir", type=str, default='/tmp/tensorflow/mnist/input_data', help="data directory")
    parser.add_argument("--batch_num", type=int, default=1000)
    parser.add_argument("--batch_size", type=int, default=200)
    args, _ = parser.parse_known_args()
    return args
142
143
144
145
146

def parse_init_json(data):
    params = {}
    for key in data:
        value = data[key]
Lee's avatar
Lee committed
147
148
149
        layer_name = value["_name"]
        if layer_name == 'Empty':
            # Empty Layer
150
            params[key] = ['Empty']
Lee's avatar
Lee committed
151
152
153
        elif layer_name == 'Conv':
            # Conv layer
            params[key] = [layer_name, value['kernel_size'], value['kernel_size']]
154
        else:
Lee's avatar
Lee committed
155
156
            # Pooling Layer
            params[key] = [layer_name, value['pooling_size'], value['pooling_size']]
157
158
159
160
161
162
    return params


if __name__ == '__main__':
    try:
        # get parameters form tuner
chicm-ms's avatar
chicm-ms committed
163
        data = nni.get_next_parameter()
164
165
166
167
        logger.debug(data)

        RCV_PARAMS = parse_init_json(data)
        logger.debug(RCV_PARAMS)
Lee's avatar
Lee committed
168
        params = vars(get_params())
169
170
171
172
173
174
175
        params.update(RCV_PARAMS)
        print(RCV_PARAMS)

        main(params)
    except Exception as exception:
        logger.exception(exception)
        raise