test_pruners.py 9.17 KB
Newer Older
chicm-ms's avatar
chicm-ms committed
1
2
3
4
5
6
7
8
9
10
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from unittest import TestCase, main
from nni.compression.torch import LevelPruner, SlimPruner, FPGMPruner, L1FilterPruner, \
11
    L2FilterPruner, AGP_Pruner, ActivationMeanRankFilterPruner, ActivationAPoZRankFilterPruner, \
Guoxin's avatar
Guoxin committed
12
    TaylorFOWeightFilterPruner, NetAdaptPruner, SimulatedAnnealingPruner, ADMMPruner, AutoCompressPruner
chicm-ms's avatar
chicm-ms committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

def validate_sparsity(wrapper, sparsity, bias=False):
    masks = [wrapper.weight_mask]
    if bias and wrapper.bias_mask is not None:
        masks.append(wrapper.bias_mask)
    for m in masks:
        actual_sparsity = (m == 0).sum().item() / m.numel()
        msg = 'actual sparsity: {:.2f}, target sparsity: {:.2f}'.format(actual_sparsity, sparsity)
        assert math.isclose(actual_sparsity, sparsity, abs_tol=0.1), msg

prune_config = {
    'level': {
        'pruner_class': LevelPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['default'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, False),
            lambda model: validate_sparsity(model.fc, 0.5, False)
        ]
    },
    'agp': {
        'pruner_class': AGP_Pruner,
        'config_list': [{
38
            'initial_sparsity': 0.,
chicm-ms's avatar
chicm-ms committed
39
40
41
42
            'final_sparsity': 0.8,
            'start_epoch': 0,
            'end_epoch': 10,
            'frequency': 1,
43
            'op_types': ['Conv2d']
chicm-ms's avatar
chicm-ms committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        }],
        'validators': []
    },
    'slim': {
        'pruner_class': SlimPruner,
        'config_list': [{
            'sparsity': 0.7,
            'op_types': ['BatchNorm2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.bn1, 0.7, model.bias)
        ]
    },
    'fpgm': {
        'pruner_class': FPGMPruner,
        'config_list':[{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l1': {
        'pruner_class': L1FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'l2': {
        'pruner_class': L2FilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
87
88
89
90
91
92
93
94
95
96
    'taylorfo': {
        'pruner_class': TaylorFOWeightFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
chicm-ms's avatar
chicm-ms committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    'mean_activation': {
        'pruner_class': ActivationMeanRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'apoz': {
        'pruner_class': ActivationAPoZRankFilterPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
Guoxin's avatar
Guoxin committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    },
    'netadapt': {
        'pruner_class': NetAdaptPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'short_term_fine_tuner': lambda model:model, 
        'evaluator':lambda model: 0.9,
        'validators': []
    },
    'simulatedannealing': {
        'pruner_class': SimulatedAnnealingPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d']
        }],
        'evaluator':lambda model: 0.9,
        'validators': []
    },
    'admm': {
        'pruner_class': ADMMPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'trainer': lambda model, optimizer, criterion, epoch, callback : model, 
        'validators': [
            lambda model: validate_sparsity(model.conv1, 0.5, model.bias)
        ]
    },
    'autocompress': {
        'pruner_class': AutoCompressPruner,
        'config_list': [{
            'sparsity': 0.5,
            'op_types': ['Conv2d'],
        }],
        'trainer': lambda model, optimizer, criterion, epoch, callback : model,
        'evaluator': lambda model: 0.9,
        'dummy_input': torch.randn([64, 1, 28, 28]),
        'validators': []
chicm-ms's avatar
chicm-ms committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    }
}

class Model(nn.Module):
    def __init__(self, bias=True):
        super(Model, self).__init__()
        self.conv1 = nn.Conv2d(1, 8, kernel_size=3, padding=1, bias=bias)
        self.bn1 = nn.BatchNorm2d(8)
        self.pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Linear(8, 2, bias=bias)
        self.bias = bias
    def forward(self, x):
        return self.fc(self.pool(self.bn1(self.conv1(x))).view(x.size(0), -1))

Guoxin's avatar
Guoxin committed
171
def pruners_test(pruner_names=['level', 'agp', 'slim', 'fpgm', 'l1', 'l2', 'taylorfo', 'mean_activation', 'apoz', 'netadapt', 'simulatedannealing', 'admm', 'autocompress'], bias=True):
chicm-ms's avatar
chicm-ms committed
172
    for pruner_name in pruner_names:
Guoxin's avatar
Guoxin committed
173
174
175
        print('testing {}...'.format(pruner_name))
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = Model(bias=bias).to(device)
chicm-ms's avatar
chicm-ms committed
176
177
178
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        config_list = prune_config[pruner_name]['config_list']

Guoxin's avatar
Guoxin committed
179
180
        x = torch.randn(2, 1, 28, 28).to(device)
        y = torch.tensor([0, 1]).long().to(device)
chicm-ms's avatar
chicm-ms committed
181
182
183
184
185
186
        out = model(x)
        loss = F.cross_entropy(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

Guoxin's avatar
Guoxin committed
187
188
189
190
191
192
193
194
195
196
        if pruner_name == 'netadapt':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, short_term_fine_tuner=prune_config[pruner_name]['short_term_fine_tuner'], evaluator=prune_config[pruner_name]['evaluator'])
        elif pruner_name == 'simulatedannealing':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, evaluator=prune_config[pruner_name]['evaluator'])
        elif pruner_name == 'admm':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, trainer=prune_config[pruner_name]['trainer'])
        elif pruner_name == 'autocompress':
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, trainer=prune_config[pruner_name]['trainer'], evaluator=prune_config[pruner_name]['evaluator'], dummy_input=x)
        else:
            pruner = prune_config[pruner_name]['pruner_class'](model, config_list, optimizer)
chicm-ms's avatar
chicm-ms committed
197
198
        pruner.compress()

Guoxin's avatar
Guoxin committed
199
200
        x = torch.randn(2, 1, 28, 28).to(device)
        y = torch.tensor([0, 1]).long().to(device)
chicm-ms's avatar
chicm-ms committed
201
202
203
204
205
206
        out = model(x)
        loss = F.cross_entropy(out, y)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

207
208
209
210
211
        if pruner_name == 'taylorfo':
            # taylorfo algorithm calculate contributions at first iteration(step), and do pruning
            # when iteration >= statistics_batch_num (default 1)
            optimizer.step()

Guoxin's avatar
Guoxin committed
212
        pruner.export_model('./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', input_shape=(2,1,28,28), device=device)
chicm-ms's avatar
chicm-ms committed
213
214
215
216

        for v in prune_config[pruner_name]['validators']:
            v(model)

Guoxin's avatar
Guoxin committed
217
218
219
220
221
    
    filePaths = ['./model_tmp.pth', './mask_tmp.pth', './onnx_tmp.pth', './search_history.csv', './search_result.json']
    for f in filePaths:
        if os.path.exists(f):
            os.remove(f)
chicm-ms's avatar
chicm-ms committed
222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def test_agp(pruning_algorithm):
        model = Model()
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
        config_list = prune_config['agp']['config_list']

        pruner = AGP_Pruner(model, config_list, optimizer, pruning_algorithm=pruning_algorithm)
        pruner.compress()

        x = torch.randn(2, 1, 28, 28)
        y = torch.tensor([0, 1]).long()

        for epoch in range(config_list[0]['start_epoch'], config_list[0]['end_epoch']+1):
            pruner.update_epoch(epoch)
            out = model(x)
            loss = F.cross_entropy(out, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            target_sparsity = pruner.compute_target_sparsity(config_list[0])
            actual_sparsity = (model.conv1.weight_mask == 0).sum().item() / model.conv1.weight_mask.numel()
            # set abs_tol = 0.2, considering the sparsity error for channel pruning when number of channels is small.
            assert math.isclose(actual_sparsity, target_sparsity, abs_tol=0.2)

chicm-ms's avatar
chicm-ms committed
247
248
249
250
251
252
253
class PrunerTestCase(TestCase):
    def test_pruners(self):
        pruners_test(bias=True)

    def test_pruners_no_bias(self):
        pruners_test(bias=False)

254
255
256
257
258
259
260
261
    def test_agp_pruner(self):
        for pruning_algorithm in ['l1', 'l2', 'taylorfo', 'apoz']:
            test_agp(pruning_algorithm)

        for pruning_algorithm in ['level']:
            prune_config['agp']['config_list'][0]['op_types'] = ['default']
            test_agp(pruning_algorithm)

chicm-ms's avatar
chicm-ms committed
262
263
if __name__ == '__main__':
    main()