auto_pruners_torch.py 17.4 KB
Newer Older
Guoxin's avatar
Guoxin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.
'''
Examples for automatic pruners
'''

import argparse
import os
import json
import torch
from torch.optim.lr_scheduler import StepLR, MultiStepLR
from torchvision import datasets, transforms, models

from models.mnist.lenet import LeNet
from models.cifar10.vgg import VGG
from nni.compression.torch import L1FilterPruner, SimulatedAnnealingPruner, ADMMPruner, NetAdaptPruner, AutoCompressPruner
from nni.compression.torch import ModelSpeedup


def get_data(args):
    '''
    get data
    '''
    kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {
    }

    if args.dataset == 'mnist':
        train_loader = torch.utils.data.DataLoader(
            datasets.MNIST(args.data_dir, train=True, download=True,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=args.batch_size, shuffle=True, **kwargs)
        val_loader = torch.utils.data.DataLoader(
            datasets.MNIST(args.data_dir, train=False,
                           transform=transforms.Compose([
                               transforms.ToTensor(),
                               transforms.Normalize((0.1307,), (0.3081,))
                           ])),
            batch_size=args.test_batch_size, shuffle=True, **kwargs)
        criterion = torch.nn.NLLLoss()
    elif args.dataset == 'cifar10':
        normalize = transforms.Normalize(
            (0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
        train_loader = torch.utils.data.DataLoader(
            datasets.CIFAR10(args.data_dir, train=True, transform=transforms.Compose([
                transforms.RandomHorizontalFlip(),
                transforms.RandomCrop(32, 4),
                transforms.ToTensor(),
                normalize,
            ]), download=True),
            batch_size=args.batch_size, shuffle=True, **kwargs)

        val_loader = torch.utils.data.DataLoader(
            datasets.CIFAR10(args.data_dir, train=False, transform=transforms.Compose([
                transforms.ToTensor(),
                normalize,
            ])),
            batch_size=args.batch_size, shuffle=False, **kwargs)
        criterion = torch.nn.CrossEntropyLoss()
    elif args.dataset == 'imagenet':
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
        train_loader = torch.utils.data.DataLoader(
            datasets.ImageFolder(os.path.join(args.data_dir, 'train'),
                                 transform=transforms.Compose([
                                     transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),
                                     transforms.ToTensor(),
                                     normalize,
                                 ])),
            batch_size=args.batch_size, shuffle=True, **kwargs)

        val_loader = torch.utils.data.DataLoader(
            datasets.ImageFolder(os.path.join(args.data_dir, 'val'),
                                 transform=transforms.Compose([
                                     transforms.Resize(256),
                                     transforms.CenterCrop(224),
                                     transforms.ToTensor(),
                                     normalize,
                                 ])),
            batch_size=args.test_batch_size, shuffle=True, **kwargs)
        criterion = torch.nn.CrossEntropyLoss()

    return train_loader, val_loader, criterion


def train(args, model, device, train_loader, criterion, optimizer, epoch, callback=None):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        # callback should be inserted between loss.backward() and optimizer.step()
        if callback:
            callback()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model, device, criterion, val_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in val_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            # sum up batch loss
            test_loss += criterion(output, target).item()
            # get the index of the max log-probability
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()

    test_loss /= len(val_loader.dataset)
    accuracy = correct / len(val_loader.dataset)

    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.2f}%)\n'.format(
        test_loss, correct, len(val_loader.dataset), 100. * accuracy))

    return accuracy


def get_trained_model(args, device, train_loader, val_loader, criterion):
    if args.model == 'LeNet':
        model = LeNet().to(device)
        optimizer = torch.optim.Adadelta(model.parameters(), lr=1)
        scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
        for epoch in range(args.pretrain_epochs):
            train(args, model, device, train_loader,
                  criterion, optimizer, epoch)
            scheduler.step()
    elif args.model == 'vgg16':
        model = VGG(depth=16).to(device)
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01,
                                    momentum=0.9,
                                    weight_decay=5e-4)
        scheduler = MultiStepLR(
            optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
        for epoch in range(args.pretrain_epochs):
            train(args, model, device, train_loader,
                  criterion, optimizer, epoch)
            scheduler.step()
    elif args.model == 'resnet18':
        model = models.resnet18(pretrained=False, num_classes=10).to(device)
        optimizer = torch.optim.SGD(model.parameters(), lr=0.01,
                                    momentum=0.9,
                                    weight_decay=5e-4)
        scheduler = MultiStepLR(
            optimizer, milestones=[int(args.pretrain_epochs*0.5), int(args.pretrain_epochs*0.75)], gamma=0.1)
        for epoch in range(args.pretrain_epochs):
            train(args, model, device, train_loader,
                  criterion, optimizer, epoch)
            scheduler.step()
    elif args.model == 'mobilenet_v2':
        model = models.mobilenet_v2(pretrained=True).to(device)

    if args.save_model:
        torch.save(model.state_dict(), os.path.join(
            args.experiment_data_dir, 'model_trained.pth'))
        print('Model trained saved to %s', args.experiment_data_dir)

    return model, optimizer


def get_dummy_input(args, device):
    if args.dataset == 'mnist':
        dummy_input = torch.randn(
            [args.test_batch_size, 1, 28, 28]).to(device)
    elif args.dataset in ['cifar10', 'imagenet']:
        dummy_input = torch.randn(
            [args.test_batch_size, 3, 32, 32]).to(device)

    return dummy_input


def main(args):
    # prepare dataset
    torch.manual_seed(0)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    train_loader, val_loader, criterion = get_data(args)
    model, optimizer = get_trained_model(args, device, train_loader, val_loader, criterion)

    def short_term_fine_tuner(model, epochs=1):
        for epoch in range(epochs):
            train(args, model, device, train_loader, criterion, optimizer, epoch)

    def trainer(model, optimizer, criterion, epoch, callback):
        return train(args, model, device, train_loader, criterion, optimizer, epoch=epoch, callback=callback)

    def evaluator(model):
        return test(model, device, criterion, val_loader)

    # used to save the performance of the original & pruned & finetuned models
    result = {}

    evaluation_result = evaluator(model)
    print('Evaluation result (original model): %s' % evaluation_result)
    result['original'] = evaluation_result

    # module types to prune, only "Conv2d" supported for channel pruning
    if args.base_algo in ['l1', 'l2']:
        op_types = ['Conv2d']
    elif args.base_algo == 'level':
        op_types = ['default']

    config_list = [{
        'sparsity': args.sparsity,
        'op_types': op_types
    }]
    dummy_input = get_dummy_input(args, device)

    if args.pruner == 'L1FilterPruner':
        pruner = L1FilterPruner(model, config_list)
    elif args.pruner == 'NetAdaptPruner':
        pruner = NetAdaptPruner(model, config_list, short_term_fine_tuner=short_term_fine_tuner, evaluator=evaluator,
                                base_algo=args.base_algo, experiment_data_dir=args.experiment_data_dir)
    elif args.pruner == 'ADMMPruner':
        # users are free to change the config here
        if args.model == 'LeNet':
            if args.base_algo in ['l1', 'l2']:
                config_list = [{
                    'sparsity': 0.8,
                    'op_types': ['Conv2d'],
                    'op_names': ['conv1']
                }, {
                    'sparsity': 0.92,
                    'op_types': ['Conv2d'],
                    'op_names': ['conv2']
                }]
            elif args.base_algo == 'level':
                config_list = [{
                    'sparsity': 0.8,
                    'op_names': ['conv1']
                }, {
                    'sparsity': 0.92,
                    'op_names': ['conv2']
                }, {
                    'sparsity': 0.991,
                    'op_names': ['fc1']
                }, {
                    'sparsity': 0.93,
                    'op_names': ['fc2']
                }]
        else:
            raise ValueError('Example only implemented for LeNet.')
        pruner = ADMMPruner(model, config_list, trainer=trainer, num_iterations=2, training_epochs=2)
    elif args.pruner == 'SimulatedAnnealingPruner':
        pruner = SimulatedAnnealingPruner(
            model, config_list, evaluator=evaluator, base_algo=args.base_algo,
            cool_down_rate=args.cool_down_rate, experiment_data_dir=args.experiment_data_dir)
    elif args.pruner == 'AutoCompressPruner':
        pruner = AutoCompressPruner(
            model, config_list, trainer=trainer, evaluator=evaluator, dummy_input=dummy_input,
            num_iterations=3, optimize_mode='maximize', base_algo=args.base_algo,
            cool_down_rate=args.cool_down_rate, admm_num_iterations=30, admm_training_epochs=5,
            experiment_data_dir=args.experiment_data_dir)
    else:
        raise ValueError(
            "Please use L1FilterPruner, NetAdaptPruner, SimulatedAnnealingPruner, ADMMPruner or AutoCompressPruner in this example.")

    # Pruner.compress() returns the masked model
    # but for AutoCompressPruner, Pruner.compress() returns directly the pruned model
    model_masked = pruner.compress()
    evaluation_result = evaluator(model_masked)
    print('Evaluation result (masked model): %s' % evaluation_result)
    result['pruned'] = evaluation_result

    if args.save_model:
        pruner.export_model(
            os.path.join(args.experiment_data_dir, 'model_masked.pth'), os.path.join(args.experiment_data_dir, 'mask.pth'))
        print('Masked model saved to %s', args.experiment_data_dir)

    if args.fine_tune:
        if args.dataset == 'mnist':
            optimizer = torch.optim.Adadelta(model_masked.parameters(), lr=1)
            scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
            for epoch in range(args.fine_tune_epochs):
                train(args, model_masked, device, train_loader, criterion, optimizer, epoch)
                scheduler.step()
                test(model_masked, device, criterion, val_loader)
        elif args.dataset == 'cifar10':
            optimizer = torch.optim.SGD(model_masked.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
            scheduler = StepLR(optimizer, step_size=1, gamma=0.7)
            for epoch in range(args.fine_tune_epochs):
                train(args, model_masked, device, train_loader, criterion, optimizer, epoch)
                scheduler.step()
                test(model_masked, device, criterion, val_loader)
        elif args.dataset == 'imagenet':
            for epoch in range(args.fine_tune_epochs):
                optimizer = torch.optim.SGD(model_masked.parameters(), lr=0.05, momentum=0.9, weight_decay=5e-4)
                train(args, model_masked, device, train_loader, criterion, optimizer, epoch)
                test(model_masked, device, criterion, val_loader)

    evaluation_result = evaluator(model_masked)
    print('Evaluation result (fine tuned): %s' % evaluation_result)
    result['finetuned'] = evaluation_result

    if args.save_model:
        pruner.export_model(os.path.join(
            args.experiment_data_dir, 'model_fine_tuned.pth'), os.path.join(args.experiment_data_dir, 'mask.pth'))
        print('Fined tuned model saved to %s', args.experiment_data_dir)

    # model speed up
    if args.speed_up and args.pruner != 'AutoCompressPruner':
        if args.model == 'LeNet':
            model = LeNet().to(device)
        elif args.model == 'vgg16':
            model = VGG(depth=16).to(device)
        elif args.model == 'resnet18':
            model = models.resnet18(pretrained=False, num_classes=10).to(device)
        elif args.model == 'mobilenet_v2':
            model = models.mobilenet_v2(pretrained=False).to(device)

        model.load_state_dict(torch.load(os.path.join(args.experiment_data_dir, 'model_fine_tuned.pth')))
        masks_file = os.path.join(args.experiment_data_dir, 'mask.pth')

        m_speedup = ModelSpeedup(model, dummy_input, masks_file, device)
        m_speedup.speedup_model()
        evaluation_result = evaluator(model)
        print('Evaluation result (speed up model): %s' % evaluation_result)
        result['speedup'] = evaluation_result

        torch.save(model.state_dict(), os.path.join(args.experiment_data_dir, 'model_speed_up.pth'))
        print('Speed up model saved to %s', args.experiment_data_dir)

    with open(os.path.join(args.experiment_data_dir, 'performance.json'), 'w+') as f:
        json.dump(result, f)


if __name__ == '__main__':
    def str2bool(v):
        if isinstance(v, bool):
            return v
        if v.lower() in ('yes', 'true', 't', 'y', '1'):
            return True
        elif v.lower() in ('no', 'false', 'f', 'n', '0'):
            return False
        else:
            raise argparse.ArgumentTypeError('Boolean value expected.')

    parser = argparse.ArgumentParser(description='PyTorch Example for SimulatedAnnealingPruner')

    parser.add_argument('--pruner', type=str, default='SimulatedAnnealingPruner',
                        help='pruner to use, L1FilterPruner, NetAdaptPruner, SimulatedAnnealingPruner, ADMMPruner or AutoCompressPruner')
    parser.add_argument('--base-algo', type=str, default='l1',
                        help='base pruning algorithm. level, l1 or l2')
    parser.add_argument('--sparsity', type=float, default=0.3,
                        help='overall target sparsity')
    parser.add_argument('--speed-up', type=str2bool, default=False,
                        help='Whether to speed-up the pruned model')

    # param for SimulatedAnnealingPruner
    parser.add_argument('--cool-down-rate', type=float, default=0.9,
                        help='cool down rate')
    # param for NetAdaptPruner
    parser.add_argument('--sparsity-per-iteration', type=float, default=0.05,
                        help='sparsity_per_iteration of NetAdaptPruner')

    parser.add_argument('--dataset', type=str, default='mnist',
                        help='dataset to use, mnist, cifar10 or imagenet (default MNIST)')
    parser.add_argument('--model', type=str, default='LeNet',
                        help='model to use, LeNet, vgg16, resnet18 or mobilenet_v2')
    parser.add_argument('--fine-tune', type=str2bool, default=True,
                        help='whether to fine-tune the pruned model')
    parser.add_argument('--fine-tune-epochs', type=int, default=10,
                        help='epochs to fine tune')
    parser.add_argument('--data-dir', type=str, default='/datasets/',
                        help='dataset directory')
    parser.add_argument('--experiment-data-dir', type=str, default='./',
                        help='For saving experiment data')

    parser.add_argument('--batch-size', type=int, default=64,
                        help='input batch size for training (default: 64)')
    parser.add_argument('--test-batch-size', type=int, default=64,
                        help='input batch size for testing (default: 64)')
    parser.add_argument('--pretrain-epochs', type=int, default=1,
                        help='number of epochs to pretrain the model')
    parser.add_argument('--log-interval', type=int, default=200,
                        help='how many batches to wait before logging training status')
    parser.add_argument('--save-model', type=str2bool, default=True,
                        help='For Saving the current Model')
    args = parser.parse_args()

    if not os.path.exists(args.experiment_data_dir):
        os.makedirs(args.experiment_data_dir)

    main(args)