ops.py 4.09 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import torch
import nni.retiarii.nn.pytorch as nn
from nni.retiarii import basic_unit

@basic_unit
class DropPath(nn.Module):
    def __init__(self, p=0.):
        """
        Drop path with probability.
        Parameters
        ----------
        p : float
            Probability of an path to be zeroed.
        """
        super().__init__()
        self.p = p

    def forward(self, x):
        if self.training and self.p > 0.:
            keep_prob = 1. - self.p
            # per data point mask
            mask = torch.zeros((x.size(0), 1, 1, 1), device=x.device).bernoulli_(keep_prob)
            return x / keep_prob * mask

        return x

@basic_unit
class PoolBN(nn.Module):
    """
    AvgPool or MaxPool with BN. `pool_type` must be `max` or `avg`.
    """
    def __init__(self, pool_type, C, kernel_size, stride, padding, affine=True):
        super().__init__()
        if pool_type.lower() == 'max':
            self.pool = nn.MaxPool2d(kernel_size, stride, padding)
        elif pool_type.lower() == 'avg':
            self.pool = nn.AvgPool2d(kernel_size, stride, padding, count_include_pad=False)
        else:
            raise ValueError()

        self.bn = nn.BatchNorm2d(C, affine=affine)

    def forward(self, x):
        out = self.pool(x)
        out = self.bn(out)
        return out

@basic_unit
class StdConv(nn.Module):
    """
    Standard conv: ReLU - Conv - BN
    """
    def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            nn.ReLU(),
            nn.Conv2d(C_in, C_out, kernel_size, stride, padding, bias=False),
            nn.BatchNorm2d(C_out, affine=affine)
        )

    def forward(self, x):
        return self.net(x)

@basic_unit
class FacConv(nn.Module):
    """
    Factorized conv: ReLU - Conv(Kx1) - Conv(1xK) - BN
    """
    def __init__(self, C_in, C_out, kernel_length, stride, padding, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            nn.ReLU(),
            nn.Conv2d(C_in, C_in, (kernel_length, 1), stride, padding, bias=False),
            nn.Conv2d(C_in, C_out, (1, kernel_length), stride, padding, bias=False),
            nn.BatchNorm2d(C_out, affine=affine)
        )

    def forward(self, x):
        return self.net(x)

@basic_unit
class DilConv(nn.Module):
    """
    (Dilated) depthwise separable conv.
    ReLU - (Dilated) depthwise separable - Pointwise - BN.
    If dilation == 2, 3x3 conv => 5x5 receptive field, 5x5 conv => 9x9 receptive field.
    """
    def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            nn.ReLU(),
            nn.Conv2d(C_in, C_in, kernel_size, stride, padding, dilation=dilation, groups=C_in,
                      bias=False),
            nn.Conv2d(C_in, C_out, 1, stride=1, padding=0, bias=False),
            nn.BatchNorm2d(C_out, affine=affine)
        )

    def forward(self, x):
        return self.net(x)

@basic_unit
class SepConv(nn.Module):
    """
    Depthwise separable conv.
    DilConv(dilation=1) * 2.
    """
    def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True):
        super().__init__()
        self.net = nn.Sequential(
            DilConv(C_in, C_in, kernel_size, stride, padding, dilation=1, affine=affine),
            DilConv(C_in, C_out, kernel_size, 1, padding, dilation=1, affine=affine)
        )

    def forward(self, x):
        return self.net(x)

@basic_unit
class FactorizedReduce(nn.Module):
    """
    Reduce feature map size by factorized pointwise (stride=2).
    """
    def __init__(self, C_in, C_out, affine=True):
        super().__init__()
        self.relu = nn.ReLU()
        self.conv1 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
        self.conv2 = nn.Conv2d(C_in, C_out // 2, 1, stride=2, padding=0, bias=False)
        self.bn = nn.BatchNorm2d(C_out, affine=affine)

    def forward(self, x):
        x = self.relu(x)
        out = torch.cat([self.conv1(x), self.conv2(x[:, :, 1:, 1:])], dim=1)
        out = self.bn(out)
        return out