test_serializer.py 11.8 KB
Newer Older
1
import math
2
import os
3
import pickle
4
import subprocess
5
import sys
6
from pathlib import Path
7

8
import pytest
9
10
import nni
import torch
11
import torch.nn as nn
12
13
14
15
16
17
18
19
20
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import MNIST

from nni.common.serializer import is_traceable

if True:  # prevent auto formatting
    sys.path.insert(0, Path(__file__).parent.as_posix())
    from imported.model import ImportTest
21

22
23
24
25
    # this test cannot be directly put in this file. It will cause syntax error for python <= 3.7.
    if tuple(sys.version_info) >= (3, 8):
        from imported._test_serializer_py38 import test_positional_only

26
27
28
29
30
31
32
33

@nni.trace
class SimpleClass:
    def __init__(self, a, b=1):
        self._a = a
        self._b = b


34
35
36
37
38
@nni.trace
class EmptyClass:
    pass


39
40
41
42
43
44
45
46
47
48
49
50
51
52
class UnserializableSimpleClass:
    def __init__(self):
        self._a = 1


def test_simple_class():
    instance = SimpleClass(1, 2)
    assert instance._a == 1
    assert instance._b == 2

    dump_str = nni.dump(instance)
    assert '"__kwargs__": {"a": 1, "b": 2}' in dump_str
    assert '"__symbol__"' in dump_str
    instance = nni.load(dump_str)
53
54
    assert instance._a == 1
    assert instance._b == 2
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


def test_external_class():
    from collections import OrderedDict
    d = nni.trace(kw_only=False)(OrderedDict)([('a', 1), ('b', 2)])
    assert d['a'] == 1
    assert d['b'] == 2
    dump_str = nni.dump(d)
    assert dump_str == '{"a": 1, "b": 2}'

    conv = nni.trace(torch.nn.Conv2d)(3, 16, 3)
    assert conv.in_channels == 3
    assert conv.out_channels == 16
    assert conv.kernel_size == (3, 3)
    assert nni.dump(conv) == \
        r'{"__symbol__": "path:torch.nn.modules.conv.Conv2d", ' \
        r'"__kwargs__": {"in_channels": 3, "out_channels": 16, "kernel_size": 3}}'

    conv = nni.load(nni.dump(conv))
74
    assert conv.kernel_size == (3, 3)
75
76
77
78
79
80
81
82


def test_nested_class():
    a = SimpleClass(1, 2)
    b = SimpleClass(a)
    assert b._a._a == 1
    dump_str = nni.dump(b)
    b = nni.load(dump_str)
83
84
    assert 'SimpleClass object at' in repr(b)
    assert b._a._a == 1
85
86
87
88
89
90
91
92
93


def test_unserializable():
    a = UnserializableSimpleClass()
    dump_str = nni.dump(a)
    a = nni.load(dump_str)
    assert a._a == 1


94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
def test_function():
    t = nni.trace(math.sqrt, kw_only=False)(3)
    assert 1 < t < 2
    assert t.trace_symbol == math.sqrt
    assert t.trace_args == [3]
    t = nni.load(nni.dump(t))
    assert 1 < t < 2
    assert not is_traceable(t)  # trace not recovered, expected, limitation

    def simple_class_factory(bb=3.):
        return SimpleClass(1, bb)

    t = nni.trace(simple_class_factory)(4)
    ts = nni.dump(t)
    assert '__kwargs__' in ts
    t = nni.load(ts)
    assert t._a == 1
    assert is_traceable(t)
    t = t.trace_copy()
    assert is_traceable(t)
    assert t.trace_symbol(10)._b == 10
    assert t.trace_kwargs['bb'] == 4
    assert is_traceable(t.trace_copy())


class Foo:
    def __init__(self, a, b=1):
        self.aa = a
        self.bb = [b + 1 for _ in range(1000)]

    def __eq__(self, other):
        return self.aa == other.aa and self.bb == other.bb


def test_custom_class():
    module = nni.trace(Foo)(3)
    assert nni.load(nni.dump(module)) == module
    module = nni.trace(Foo)(b=2, a=1)
    assert nni.load(nni.dump(module)) == module

    module = nni.trace(Foo)(Foo(1), 5)
    dumped_module = nni.dump(module)
136
137
    module = nni.load(dumped_module)
    assert module.bb[0] == module.bb[999] == 6
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

    module = nni.trace(Foo)(nni.trace(Foo)(1), 5)
    dumped_module = nni.dump(module)
    assert nni.load(dumped_module) == module


class Foo:
    def __init__(self, a, b=1):
        self.aa = a
        self.bb = [b + 1 for _ in range(1000)]

    def __eq__(self, other):
        return self.aa == other.aa and self.bb == other.bb


def test_basic_unit_and_custom_import():
    module = ImportTest(3, 0.5)
    ss = nni.dump(module)
    assert ss == r'{"__symbol__": "path:imported.model.ImportTest", "__kwargs__": {"foo": 3, "bar": 0.5}}'
    assert nni.load(nni.dump(module)) == module

    import nni.retiarii.nn.pytorch as nn
    module = nn.Conv2d(3, 10, 3, bias=False)
    ss = nni.dump(module)
    assert ss == r'{"__symbol__": "path:torch.nn.modules.conv.Conv2d", "__kwargs__": {"in_channels": 3, "out_channels": 10, "kernel_size": 3, "bias": false}}'
    assert nni.load(ss).bias is None


def test_dataset():
    dataset = nni.trace(MNIST)(root='data/mnist', train=False, download=True)
    dataloader = nni.trace(DataLoader)(dataset, batch_size=10)

    dumped_ans = {
        "__symbol__": "path:torch.utils.data.dataloader.DataLoader",
        "__kwargs__": {
            "dataset": {
                "__symbol__": "path:torchvision.datasets.mnist.MNIST",
                "__kwargs__": {"root": "data/mnist", "train": False, "download": True}
            },
            "batch_size": 10
        }
    }
    print(nni.dump(dataloader))
    print(nni.dump(dumped_ans))
    assert nni.dump(dataloader) == nni.dump(dumped_ans)
    dataloader = nni.load(nni.dump(dumped_ans))
    assert isinstance(dataloader, DataLoader)

    dataset = nni.trace(MNIST)(root='data/mnist', train=False, download=True,
                               transform=nni.trace(transforms.Compose)([
                                   nni.trace(transforms.ToTensor)(),
                                   nni.trace(transforms.Normalize)((0.1307,), (0.3081,))
                               ]))
    dataloader = nni.trace(DataLoader)(dataset, batch_size=10)
    x, y = next(iter(nni.load(nni.dump(dataloader))))
    assert x.size() == torch.Size([10, 1, 28, 28])
    assert y.size() == torch.Size([10])

    dataset = nni.trace(MNIST)(root='data/mnist', train=False, download=True,
                               transform=nni.trace(transforms.Compose)(
                                   [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
                               ))
    dataloader = nni.trace(DataLoader)(dataset, batch_size=10)
    x, y = next(iter(nni.load(nni.dump(dataloader))))
    assert x.size() == torch.Size([10, 1, 28, 28])
    assert y.size() == torch.Size([10])


206
207
208
209
210
211
212
213
214
215
216
217
218
219
def test_pickle():
    pickle.dumps(EmptyClass())
    obj = SimpleClass(1)
    obj = pickle.loads(pickle.dumps(obj))

    assert obj._a == 1
    assert obj._b == 1

    obj = SimpleClass(1)
    obj.xxx = 3
    obj = pickle.loads(pickle.dumps(obj))
    assert obj.xxx == 3


220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
@pytest.mark.skipif(sys.platform != 'linux', reason='https://github.com/microsoft/nni/issues/4434')
def test_multiprocessing_dataloader():
    # check whether multi-processing works
    # it's possible to have pickle errors
    dataset = nni.trace(MNIST)(root='data/mnist', train=False, download=True,
                               transform=nni.trace(transforms.Compose)(
                                   [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
                               ))
    import nni.retiarii.evaluator.pytorch.lightning as pl
    dataloader = pl.DataLoader(dataset, batch_size=10, num_workers=2)
    x, y = next(iter(dataloader))
    assert x.size() == torch.Size([10, 1, 28, 28])
    assert y.size() == torch.Size([10])


235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
def _test_multiprocessing_dataset_worker(dataset):
    if sys.platform == 'linux':
        # on non-linux, the loaded object will become non-traceable
        # due to an implementation limitation
        assert is_traceable(dataset)
    else:
        from torch.utils.data import Dataset
        assert isinstance(dataset, Dataset)


def test_multiprocessing_dataset():
    from torch.utils.data import Dataset

    dataset = nni.trace(Dataset)()

    import multiprocessing
    process = multiprocessing.Process(target=_test_multiprocessing_dataset_worker, args=(dataset, ))
    process.start()
    process.join()
    assert process.exitcode == 0


257
258
259
260
261
262
263
264
265
266
267
268
def test_type():
    assert nni.dump(torch.optim.Adam) == '{"__nni_type__": "path:torch.optim.adam.Adam"}'
    assert nni.load('{"__nni_type__": "path:torch.optim.adam.Adam"}') == torch.optim.Adam
    assert Foo == nni.load(nni.dump(Foo))
    assert nni.dump(math.floor) == '{"__nni_type__": "path:math.floor"}'
    assert nni.load('{"__nni_type__": "path:math.floor"}') == math.floor


def test_lightning_earlystop():
    import nni.retiarii.evaluator.pytorch.lightning as pl
    from pytorch_lightning.callbacks.early_stopping import EarlyStopping
    trainer = pl.Trainer(callbacks=[nni.trace(EarlyStopping)(monitor="val_loss")])
269
270
    pickle_size_limit = 4096 if sys.platform == 'linux' else 32768
    trainer = nni.load(nni.dump(trainer, pickle_size_limit=pickle_size_limit))
271
272
273
    assert any(isinstance(callback, EarlyStopping) for callback in trainer.callbacks)


274
275
276
277
278
279
280
281
282
def test_pickle_trainer():
    import nni.retiarii.evaluator.pytorch.lightning as pl
    from pytorch_lightning import Trainer
    trainer = pl.Trainer(max_epochs=1)
    data = pickle.dumps(trainer)
    trainer = pickle.loads(data)
    assert isinstance(trainer, Trainer)


283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
def test_generator():
    import torch.nn as nn
    import torch.optim as optim

    class Net(nn.Module):
        def __init__(self):
            super().__init__()
            self.conv = nn.Conv2d(3, 10, 1)

        def forward(self, x):
            return self.conv(x)

    model = Net()
    optimizer = nni.trace(optim.Adam)(model.parameters())
    print(optimizer.trace_kwargs)


300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
def test_arguments_kind():
    def foo(a, b, *c, **d):
        pass

    d = nni.trace(foo)(1, 2, 3, 4)
    assert d.trace_args == [1, 2, 3, 4]
    assert d.trace_kwargs == {}

    d = nni.trace(foo)(a=1, b=2)
    assert d.trace_kwargs == dict(a=1, b=2)

    d = nni.trace(foo)(1, b=2)
    # this is not perfect, but it's safe
    assert d.trace_kwargs == dict(a=1, b=2)

    def foo(a, *, b=3, c=5):
        pass

    d = nni.trace(foo)(1, b=2, c=3)
    assert d.trace_kwargs == dict(a=1, b=2, c=3)

    import torch.nn as nn
    lstm = nni.trace(nn.LSTM)(2, 2)
    assert lstm.input_size == 2
    assert lstm.hidden_size == 2
    assert lstm.trace_args == [2, 2]

    lstm = nni.trace(nn.LSTM)(input_size=2, hidden_size=2)
    assert lstm.trace_kwargs == {'input_size': 2, 'hidden_size': 2}

330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
def test_subclass():
    @nni.trace
    class Super:
        def __init__(self, a, b):
            self._a = a
            self._b = b

    class Sub1(Super):
        def __init__(self, c, d):
            super().__init__(3, 4)
            self._c = c
            self._d = d

    @nni.trace
    class Sub2(Super):
        def __init__(self, c, d):
            super().__init__(3, 4)
            self._c = c
            self._d = d

    obj = Sub1(1, 2)
    # There could be trace_kwargs for obj. Behavior is undefined.
    assert obj._a == 3 and obj._c == 1
    assert isinstance(obj, Super)
    obj = Sub2(1, 2)
    assert obj.trace_kwargs == {'c': 1, 'd': 2}
    assert issubclass(type(obj), Super)
    assert isinstance(obj, Super)
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380


def test_get():
    @nni.trace
    class Foo:
        def __init__(self, a = 1):
            self._a = a

        def bar(self):
            return self._a + 1

    obj = Foo(3)
    assert nni.load(nni.dump(obj)).bar() == 4
    obj1 = obj.trace_copy()
    with pytest.raises(AttributeError):
        obj1.bar()
    obj1.trace_kwargs['a'] = 5
    obj1 = obj1.get()
    assert obj1.bar() == 6
    obj2 = obj1.trace_copy()
    obj2.trace_kwargs['a'] = -1
    assert obj2.get().bar() == 0
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401


def test_model_wrapper_serialize():
    from nni.retiarii import model_wrapper

    @model_wrapper
    class Model(nn.Module):
        def __init__(self, in_channels):
            super().__init__()
            self.in_channels = in_channels

    model = Model(3)
    dumped = nni.dump(model)
    loaded = nni.load(dumped)
    assert loaded.in_channels == 3


def test_model_wrapper_across_process():
    main_file = os.path.join(os.path.dirname(__file__), 'imported', '_test_serializer_main.py')
    subprocess.run([sys.executable, main_file, '0'], check=True)
    subprocess.run([sys.executable, main_file, '1'], check=True)