darts.rst 44.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

.. DO NOT EDIT.
.. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY.
.. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE:
.. "tutorials/darts.py"
.. LINE NUMBERS ARE GIVEN BELOW.

.. only:: html

    .. note::
        :class: sphx-glr-download-link-note

        Click :ref:`here <sphx_glr_download_tutorials_darts.py>`
        to download the full example code

.. rst-class:: sphx-glr-example-title

.. _sphx_glr_tutorials_darts.py:


Searching in DARTS search space
===============================

In this tutorial, we demonstrate how to search in the famous model space proposed in `DARTS`_.

Through this process, you will learn:

* How to use the built-in model spaces from NNI's model space hub.
* How to use one-shot exploration strategies to explore a model space.
* How to customize evaluators to achieve the best performance.

In the end, we get a strong-performing model on CIFAR-10 dataset, which achieves up to 97.28% accuracy.

.. attention::

   Running this tutorial requires a GPU.
   If you don't have one, you can set ``gpus`` in :class:`~nni.retiarii.evaluator.pytorch.Classification` to be 0,
   but do note that it will be much slower.

.. _DARTS: https://arxiv.org/abs/1806.09055

42
43
Use a pre-searched DARTS model
------------------------------
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

Similar to `the beginner tutorial of PyTorch <https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html>`__,
we begin with CIFAR-10 dataset, which is a image classification dataset of 10 categories.
The images in CIFAR-10 are of size 3x32x32, i.e., RGB-colored images of 32x32 pixels in size.

We first load the CIFAR-10 dataset with torchvision.

.. GENERATED FROM PYTHON SOURCE LINES 32-49

.. code-block:: default


    import nni
    import torch
    from torchvision import transforms
    from torchvision.datasets import CIFAR10
    from nni.retiarii.evaluator.pytorch import DataLoader

    CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
    CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]

    transform_valid = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
    ])
    valid_data = nni.trace(CIFAR10)(root='./data', train=False, download=True, transform=transform_valid)
    valid_loader = DataLoader(valid_data, batch_size=256, num_workers=6)





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Files already downloaded and verified




85
.. GENERATED FROM PYTHON SOURCE LINES 50-70
86
87
88
89
90
91
92

.. note::

   If you are to use multi-trial strategies, wrapping CIFAR10 with :func:`nni.trace` and
   use DataLoader from ``nni.retiarii.evaluator.pytorch`` (instead of ``torch.utils.data``) are mandatory.
   Otherwise, it's optional.

93
NNI presents many built-in model spaces, along with many *pre-searched models* in :doc:`model space hub </nas/space_hub>`,
94
which are produced by most popular NAS literatures.
95
96
A pre-trained model is a saved network that was previously trained on a large dataset like CIFAR-10 or ImageNet.
You can easily load these models as a starting point, validate their performances, and finetune them if you need.
97

98
In this tutorial, we choose one from `DARTS`_ search space, which is natively trained on our target dataset, CIFAR-10,
99
100
101
102
103
104
105
106
107
so as to save the tedious steps of finetuning.

.. tip::

   Finetuning a pre-searched model on other datasets is no different from finetuning *any model*.
   We recommend reading
   `this tutorial of object detection finetuning <https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html>`__
   if you want to know how finetuning is generally done in PyTorch.

108
.. GENERATED FROM PYTHON SOURCE LINES 71-93
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

.. code-block:: default


    from nni.retiarii.hub.pytorch import DARTS as DartsSpace

    darts_v2_model = DartsSpace.load_searched_model('darts-v2', pretrained=True, download=True)

    def evaluate_model(model, cuda=False):
        device = torch.device('cuda' if cuda else 'cpu')
        model.to(device)
        model.eval()
        with torch.no_grad():
            correct = total = 0
            for inputs, targets in valid_loader:
                inputs, targets = inputs.to(device), targets.to(device)
                logits = model(inputs)
                _, predict = torch.max(logits, 1)
                correct += (predict == targets).sum().cpu().item()
                total += targets.size(0)
        print('Accuracy:', correct / total)
        return correct / total

132
    evaluate_model(darts_v2_model, cuda=True)  # Set this to false if there's no GPU.
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Accuracy: 0.9737

    0.9737



148
.. GENERATED FROM PYTHON SOURCE LINES 94-158
149

150
The journey of using a pre-searched model could end here. Or you are interested,
151
152
we can go a step further to search a model within :class:`~nni.retiarii.hub.pytorch.DARTS` space on our own.

153
154
Use the DARTS model space
-------------------------
155
156
157
158
159
160
161
162
163
164
165
166
167
168

The model space provided in `DARTS`_ originated from `NASNet <https://arxiv.org/abs/1707.07012>`__,
where the full model is constructed by repeatedly stacking a single computational unit (called a **cell**).
There are two types of cells within a network. The first type is called *normal cell*, and the second type is called *reduction cell*.
The key difference between normal and reduction cell is that the reduction cell will downsample the input feature map,
and decrease its resolution. Normal and reduction cells are stacked alternately, as shown in the following figure.

.. image:: ../../img/nasnet_cell_stack.png

A cell takes outputs from two previous cells as inputs and contains a collection of *nodes*.
Each node takes two previous nodes within the same cell (or the two cell inputs),
and applies an *operator* (e.g., convolution, or max-pooling) to each input,
and sums the outputs of operators as the output of the node.
The output of cell is the concatenation of all the nodes that are never used as inputs of another node.
169
Users could read `NDS <https://arxiv.org/pdf/1905.13214.pdf>`__ or `ENAS <https://arxiv.org/abs/1802.03268>`__ for more details.
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

We illustrate an example of cells in the following figure.

.. image:: ../../img/nasnet_cell.png

The search space proposed in `DARTS`_ paper introduced two modifications to the original space
in `NASNet <https://arxiv.org/abs/1707.07012>`__.

Firstly, the operator candidates have been narrowed down to seven:

- Max pooling 3x3
- Average pooling 3x3
- Skip connect (Identity)
- Separable convolution 3x3
- Separable convolution 5x5
- Dilated convolution 3x3
- Dilated convolution 5x5

Secondly, the output of cell is the concatenate of **all the nodes within the cell**.

As the search space is based on cell, once the normal and reduction cell has been fixed, we can stack them for indefinite times.
To save the search cost, the common practice is to reduce the number of filters (i.e., channels) and number of stacked cells
during the search phase, and increase them back when training the final searched architecture.

.. note::

   `DARTS`_ is one of those papers that innovate both in search space and search strategy.
   In this tutorial, we will search on **model space** provided by DARTS with **search strategy** proposed by DARTS.
   We refer to them as *DARTS model space* (``DartsSpace``) and *DARTS strategy* (``DartsStrategy``), respectively.
   We did NOT imply that the :class:`~nni.retiarii.hub.pytorch.DARTS` space and
   :class:`~nni.retiarii.strategy.DARTS` strategy has to used together.
   You can always explore the DARTS space with another search strategy, or use your own strategy to search a different model space.

In the following example, we initialize a :class:`~nni.retiarii.hub.pytorch.DARTS`
model space, with 16 initial filters and 8 stacked cells.
The network is specialized for CIFAR-10 dataset with 32x32 input resolution.

The :class:`~nni.retiarii.hub.pytorch.DARTS` model space here is provided by :doc:`model space hub </nas/space_hub>`,
where we have supported multiple popular model spaces for plug-and-play.

.. tip::

   The model space here can be replaced with any space provided in the hub,
   or even customized spaces built from scratch.

215
.. GENERATED FROM PYTHON SOURCE LINES 159-166
216
217
218
219

.. code-block:: default


220
221
222
223
224
    model_space = DartsSpace(
        width=16,           # the initial filters (channel number) for the model
        num_cells=8,        # the number of stacked cells in total
        dataset='cifar'     # to give a hint about input resolution, here is 32x32
    )
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321








.. GENERATED FROM PYTHON SOURCE LINES 167-174

Search on the model space
-------------------------

.. warning::

   Please set ``fast_dev_run`` to False to reproduce the our claimed results.
   Otherwise, only a few mini-batches will be run.

.. GENERATED FROM PYTHON SOURCE LINES 175-178

.. code-block:: default


    fast_dev_run = True








.. GENERATED FROM PYTHON SOURCE LINES 179-190

Evaluator
^^^^^^^^^

To begin exploring the model space, one firstly need to have an evaluator to provide the criterion of a "good model".
As we are searching on CIFAR-10 dataset, one can easily use the :class:`~nni.retiarii.evaluator.pytorch.Classification`
as a starting point.

Note that for a typical setup of NAS, the model search should be on validation set, and the evaluation of the final searched model
should be on test set. However, as CIFAR-10 dataset doesn't have a test dataset (only 50k train + 10k valid),
we have to split the original training set into a training set and a validation set.
The recommended train/val split by `DARTS`_ strategy is 1:1.

.. GENERATED FROM PYTHON SOURCE LINES 191-229

.. code-block:: default


    import numpy as np
    from nni.retiarii.evaluator.pytorch import Classification
    from torch.utils.data import SubsetRandomSampler

    transform = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
    ])

    train_data = nni.trace(CIFAR10)(root='./data', train=True, download=True, transform=transform)

    num_samples = len(train_data)
    indices = np.random.permutation(num_samples)
    split = num_samples // 2

    search_train_loader = DataLoader(
        train_data, batch_size=64, num_workers=6,
        sampler=SubsetRandomSampler(indices[:split]),
    )

    search_valid_loader = DataLoader(
        train_data, batch_size=64, num_workers=6,
        sampler=SubsetRandomSampler(indices[split:]),
    )

    evaluator = Classification(
        learning_rate=1e-3,
        weight_decay=1e-4,
        train_dataloaders=search_train_loader,
        val_dataloaders=search_valid_loader,
        max_epochs=10,
        gpus=1,
        fast_dev_run=fast_dev_run,
    )





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Files already downloaded and verified
322
    /data/data0/jiahang/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:447: LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.
323
324
325
326
327
328
329
330
331
332
      rank_zero_deprecation(
    GPU available: True (cuda), used: True
    TPU available: False, using: 0 TPU cores
    IPU available: False, using: 0 IPUs
    HPU available: False, using: 0 HPUs
    Running in `fast_dev_run` mode: will run the requested loop using 1 batch(es). Logging and checkpointing is suppressed.




333
.. GENERATED FROM PYTHON SOURCE LINES 230-250
334
335
336
337
338
339
340
341
342
343

Strategy
^^^^^^^^

We will use `DARTS`_ (Differentiable ARchiTecture Search) as the search strategy to explore the model space.
:class:`~nni.retiarii.strategy.DARTS` strategy belongs to the category of :ref:`one-shot strategy <one-shot-nas>`.
The fundamental differences between One-shot strategies and :ref:`multi-trial strategies <multi-trial-nas>` is that,
one-shot strategy combines search with model training into a single run.
Compared to multi-trial strategies, one-shot NAS doesn't need to iteratively spawn new trials (i.e., models),
and thus saves the excessive cost of model training.
344
345
346
347
348
349
350
351

.. note::

   It's worth mentioning that one-shot NAS also suffers from multiple drawbacks despite its computational efficiency.
   We recommend
   `Weight-Sharing Neural Architecture Search: A Battle to Shrink the Optimization Gap <https://arxiv.org/abs/2008.01475>`__
   and
   `How Does Supernet Help in Neural Architecture Search? <https://arxiv.org/abs/2010.08219>`__ for interested readers.
352
353
354
355

:class:`~nni.retiarii.strategy.DARTS` strategy is provided as one of NNI's :doc:`built-in search strategies </nas/exploration_strategy>`.
Using it can be as simple as one line of code.

356
.. GENERATED FROM PYTHON SOURCE LINES 251-256
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

.. code-block:: default


    from nni.retiarii.strategy import DARTS as DartsStrategy

    strategy = DartsStrategy()








372
.. GENERATED FROM PYTHON SOURCE LINES 257-276
373
374
375
376
377
378
379
380
381
382
383
384

.. tip:: The ``DartsStrategy`` here can be replaced by any search strategies, even multi-trial strategies.

If you want to know how DARTS strategy works, here is a brief version.
Under the hood, DARTS converts the cell into a densely connected graph, and put operators on edges (see the following figure).
Since the operators are not decided yet, every edge is a weighted mixture of multiple operators (multiple color in the figure).
DARTS then learns to assign the optimal "color" for each edge during the network training.
It finally selects one "color" for each edge, and drops redundant edges.
The weights on the edges are called *architecture weights*.

.. image:: ../../img/darts_illustration.png

385
.. tip:: It's NOT reflected in the figure that, for DARTS model space, exactly two inputs are kept for every node.
386
387
388
389
390
391
392
393

Launch experiment
^^^^^^^^^^^^^^^^^

We then come to the step of launching the experiment.
This step is similar to what we have done in the :doc:`beginner tutorial <hello_nas>`,
except that the ``execution_engine`` argument should be set to ``oneshot``.

394
.. GENERATED FROM PYTHON SOURCE LINES 277-284
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

.. code-block:: default


    from nni.retiarii.experiment.pytorch import RetiariiExperiment, RetiariiExeConfig

    config = RetiariiExeConfig(execution_engine='oneshot')
    experiment = RetiariiExperiment(model_space, evaluator=evaluator, strategy=strategy)
    experiment.run(config)





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

413
    LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [3]
414
415
416
417
418
419
420
421
422

      | Name  | Type                 | Params
    -----------------------------------------------
    0 | model | ClassificationModule | 3.0 M 
    -----------------------------------------------
    3.0 M     Trainable params
    0         Non-trainable params
    3.0 M     Total params
    12.164    Total estimated model params size (MB)
423
    /data/data0/jiahang/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:1892: PossibleUserWarning: The number of training batches (1) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.
424
      rank_zero_warn(
425
426

    Training: 0it [00:00, ?it/s]
    Training:   0%|          | 0/1 [00:00<?, ?it/s]
    Epoch 0:   0%|          | 0/1 [00:00<?, ?it/s] 
    Epoch 0: 100%|##########| 1/1 [00:03<00:00,  3.75s/it]
    Epoch 0: 100%|##########| 1/1 [00:03<00:00,  3.75s/it, v_num=, train_loss=2.310, train_acc=0.0781]
    Epoch 0: 100%|##########| 1/1 [00:03<00:00,  3.76s/it, v_num=, train_loss=2.310, train_acc=0.0781]`Trainer.fit` stopped: `max_epochs=1` reached.

    Epoch 0: 100%|##########| 1/1 [00:03<00:00,  3.77s/it, v_num=, train_loss=2.310, train_acc=0.0781]
427
428
429
430




431
.. GENERATED FROM PYTHON SOURCE LINES 285-297
432
433
434
435
436
437
438
439
440
441
442
443
444
445

.. tip::

   The search process can be visualized with tensorboard. For example::

       tensorboard --logdir=./lightning_logs

   Then, open the browser and go to http://localhost:6006/ to monitor the search process.

   .. image:: ../../img/darts_search_process.png

We can then retrieve the best model found by the strategy with ``export_top_models``.
Here, the retrieved model is a dict (called *architecture dict*) describing the selected normal cell and reduction cell.

446
.. GENERATED FROM PYTHON SOURCE LINES 298-303
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

.. code-block:: default


    exported_arch = experiment.export_top_models()[0]

    exported_arch





.. rst-class:: sphx-glr-script-out

 .. code-block:: none


464
    {'normal/op_2_0': 'sep_conv_5x5', 'normal/input_2_0': 1, 'normal/op_2_1': 'max_pool_3x3', 'normal/input_2_1': 0, 'normal/op_3_0': 'dil_conv_5x5', 'normal/input_3_0': 0, 'normal/op_3_1': 'sep_conv_3x3', 'normal/input_3_1': 2, 'normal/op_4_0': 'dil_conv_5x5', 'normal/input_4_0': 3, 'normal/op_4_1': 'sep_conv_3x3', 'normal/input_4_1': 1, 'normal/op_5_0': 'sep_conv_5x5', 'normal/input_5_0': 1, 'normal/op_5_1': 'dil_conv_5x5', 'normal/input_5_1': 3, 'reduce/op_2_0': 'dil_conv_5x5', 'reduce/input_2_0': 0, 'reduce/op_2_1': 'sep_conv_5x5', 'reduce/input_2_1': 1, 'reduce/op_3_0': 'sep_conv_5x5', 'reduce/input_3_0': 1, 'reduce/op_3_1': 'max_pool_3x3', 'reduce/input_3_1': 2, 'reduce/op_4_0': 'avg_pool_3x3', 'reduce/input_4_0': 1, 'reduce/op_4_1': 'dil_conv_5x5', 'reduce/input_4_1': 3, 'reduce/op_5_0': 'sep_conv_3x3', 'reduce/input_5_0': 1, 'reduce/op_5_1': 'sep_conv_5x5', 'reduce/input_5_1': 3}
465
466
467



468
.. GENERATED FROM PYTHON SOURCE LINES 304-306
469
470
471
472

The cell can be visualized with the following code snippet
(copied and modified from `DARTS visualization <https://github.com/quark0/darts/blob/master/cnn/visualize.py>`__).

473
.. GENERATED FROM PYTHON SOURCE LINES 307-362
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

.. code-block:: default


    import io
    import graphviz
    import matplotlib.pyplot as plt
    from PIL import Image

    def plot_single_cell(arch_dict, cell_name):
        g = graphviz.Digraph(
            node_attr=dict(style='filled', shape='rect', align='center'),
            format='png'
        )
        g.body.extend(['rankdir=LR'])

        g.node('c_{k-2}', fillcolor='darkseagreen2')
        g.node('c_{k-1}', fillcolor='darkseagreen2')
        assert len(arch_dict) % 2 == 0

        for i in range(2, 6):
            g.node(str(i), fillcolor='lightblue')

        for i in range(2, 6):
            for j in range(2):
                op = arch_dict[f'{cell_name}/op_{i}_{j}']
                from_ = arch_dict[f'{cell_name}/input_{i}_{j}']
                if from_ == 0:
                    u = 'c_{k-2}'
                elif from_ == 1:
                    u = 'c_{k-1}'
                else:
                    u = str(from_)
                v = str(i)
                g.edge(u, v, label=op, fillcolor='gray')

        g.node('c_{k}', fillcolor='palegoldenrod')
        for i in range(2, 6):
            g.edge(str(i), 'c_{k}', fillcolor='gray')

        g.attr(label=f'{cell_name.capitalize()} cell')

        image = Image.open(io.BytesIO(g.pipe()))
        return image

    def plot_double_cells(arch_dict):
        image1 = plot_single_cell(arch_dict, 'normal')
        image2 = plot_single_cell(arch_dict, 'reduce')
        height_ratio = max(image1.size[1] / image1.size[0], image2.size[1] / image2.size[0]) 
        _, axs = plt.subplots(1, 2, figsize=(20, 10 * height_ratio))
        axs[0].imshow(image1)
        axs[1].imshow(image2)
        axs[0].axis('off')
        axs[1].axis('off')
        plt.show()

    plot_double_cells(exported_arch)




.. image-sg:: /tutorials/images/sphx_glr_darts_001.png
   :alt: darts
   :srcset: /tutorials/images/sphx_glr_darts_001.png
   :class: sphx-glr-single-img





544
.. GENERATED FROM PYTHON SOURCE LINES 363-367
545
546
547
548
549
550

.. warning:: The cell above is obtained via ``fast_dev_run`` (i.e., running only 1 mini-batch).

When ``fast_dev_run`` is turned off, we get a model with the following architecture,
where you might notice an interesting fact that around half the operations have selected ``sep_conv_3x3``.

551
.. GENERATED FROM PYTHON SOURCE LINES 368-404
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602

.. code-block:: default


    plot_double_cells({
        'normal/op_2_0': 'sep_conv_3x3',
        'normal/input_2_0': 1,
        'normal/op_2_1': 'sep_conv_3x3',
        'normal/input_2_1': 0,
        'normal/op_3_0': 'sep_conv_3x3',
        'normal/input_3_0': 1,
        'normal/op_3_1': 'sep_conv_3x3',
        'normal/input_3_1': 2,
        'normal/op_4_0': 'sep_conv_3x3',
        'normal/input_4_0': 1,
        'normal/op_4_1': 'sep_conv_3x3',
        'normal/input_4_1': 0,
        'normal/op_5_0': 'sep_conv_3x3',
        'normal/input_5_0': 1,
        'normal/op_5_1': 'max_pool_3x3',
        'normal/input_5_1': 0,
        'reduce/op_2_0': 'sep_conv_3x3',
        'reduce/input_2_0': 0,
        'reduce/op_2_1': 'sep_conv_3x3',
        'reduce/input_2_1': 1,
        'reduce/op_3_0': 'dil_conv_5x5',
        'reduce/input_3_0': 2,
        'reduce/op_3_1': 'sep_conv_3x3',
        'reduce/input_3_1': 0,
        'reduce/op_4_0': 'dil_conv_5x5',
        'reduce/input_4_0': 2,
        'reduce/op_4_1': 'sep_conv_5x5',
        'reduce/input_4_1': 1,
        'reduce/op_5_0': 'sep_conv_5x5',
        'reduce/input_5_0': 4,
        'reduce/op_5_1': 'dil_conv_5x5',
        'reduce/input_5_1': 2
    })




.. image-sg:: /tutorials/images/sphx_glr_darts_002.png
   :alt: darts
   :srcset: /tutorials/images/sphx_glr_darts_002.png
   :class: sphx-glr-single-img





603
.. GENERATED FROM PYTHON SOURCE LINES 405-415
604
605
606
607
608
609
610
611
612

Retrain the searched model
--------------------------

What we have got in the last step, is only a cell structure.
To get a final usable model with trained weights, we need to construct a real model based on this structure,
and then fully train it.

To construct a fixed model based on the architecture dict exported from the experiment,
613
614
we can use :func:`nni.retiarii.fixed_arch`. Under the with-context, we will creating a fixed model based on ``exported_arch``,
instead of creating a space.
615

616
.. GENERATED FROM PYTHON SOURCE LINES 416-422
617
618
619
620
621
622
623

.. code-block:: default


    from nni.retiarii import fixed_arch

    with fixed_arch(exported_arch):
624
        final_model = DartsSpace(width=16, num_cells=8, dataset='cifar')
625
626
627
628
629
630
631
632








633
.. GENERATED FROM PYTHON SOURCE LINES 423-424
634
635
636

We then train the model on full CIFAR-10 training dataset, and evaluate it on the original CIFAR-10 validation dataset.

637
.. GENERATED FROM PYTHON SOURCE LINES 425-428
638
639
640
641
642
643
644
645
646
647
648
649
650

.. code-block:: default


    train_loader = DataLoader(train_data, batch_size=96, num_workers=6)  # Use the original training data








651
.. GENERATED FROM PYTHON SOURCE LINES 429-430
652
653
654

The validation data loader can be reused.

655
.. GENERATED FROM PYTHON SOURCE LINES 431-434
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670

.. code-block:: default


    valid_loader





.. rst-class:: sphx-glr-script-out

 .. code-block:: none


671
    <torch.utils.data.dataloader.DataLoader object at 0x7f5e187c0430>
672
673
674



675
.. GENERATED FROM PYTHON SOURCE LINES 435-438
676
677
678
679
680

We must create a new evaluator here because a different data split is used.
Also, we should avoid the underlying pytorch-lightning implementation of :class:`~nni.retiarii.evaluator.pytorch.Classification`
evaluator from loading the wrong checkpoint.

681
.. GENERATED FROM PYTHON SOURCE LINES 439-455
682
683
684
685
686
687
688
689
690
691
692
693
694

.. code-block:: default


    max_epochs = 100

    evaluator = Classification(
        learning_rate=1e-3,
        weight_decay=1e-4,
        train_dataloaders=train_loader,
        val_dataloaders=valid_loader,
        max_epochs=max_epochs,
        gpus=1,
695
696
        export_onnx=False,          # Disable ONNX export for this experiment
        fast_dev_run=fast_dev_run   # Should be false for fully training
697
698
699
700
701
702
703
704
705
706
707
708
    )

    evaluator.fit(final_model)





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

709
    /data/data0/jiahang/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:447: LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.
710
711
712
713
714
715
      rank_zero_deprecation(
    GPU available: True (cuda), used: True
    TPU available: False, using: 0 TPU cores
    IPU available: False, using: 0 IPUs
    HPU available: False, using: 0 HPUs
    Running in `fast_dev_run` mode: will run the requested loop using 1 batch(es). Logging and checkpointing is suppressed.
716
    LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [3]
717
718
719
720
721

      | Name      | Type             | Params
    -----------------------------------------------
    0 | criterion | CrossEntropyLoss | 0     
    1 | metrics   | ModuleDict       | 0     
722
    2 | model     | DARTS            | 345 K 
723
    -----------------------------------------------
724
    345 K     Trainable params
725
    0         Non-trainable params
726
727
728
    345 K     Total params
    1.381     Total estimated model params size (MB)
    /data/data0/jiahang/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:1892: PossibleUserWarning: The number of training batches (1) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.
729
      rank_zero_warn(
730

    Training: 0it [00:00, ?it/s]
    Training:   0%|          | 0/2 [00:00<?, ?it/s]
    Epoch 0:   0%|          | 0/2 [00:00<?, ?it/s] 
    Epoch 0:  50%|#####     | 1/2 [00:00<00:00,  1.02it/s]
    Epoch 0:  50%|#####     | 1/2 [00:00<00:00,  1.02it/s, loss=2.46, v_num=, train_loss=2.460, train_acc=0.0729]
731
732
733

    Validation: 0it [00:00, ?it/s]

    Validation:   0%|          | 0/1 [00:00<?, ?it/s]

    Validation DataLoader 0:   0%|          | 0/1 [00:00<?, ?it/s]
734
735
736

    Validation DataLoader 0: 100%|##########| 1/1 [00:00<00:00, 11.12it/s]
    Epoch 0: 100%|##########| 2/2 [00:01<00:00,  1.15it/s, loss=2.46, v_num=, train_loss=2.460, train_acc=0.0729]
    Epoch 0: 100%|##########| 2/2 [00:01<00:00,  1.15it/s, loss=2.46, v_num=, train_loss=2.460, train_acc=0.0729, val_loss=2.300, val_acc=0.117]

                                                                          
    Epoch 0: 100%|##########| 2/2 [00:01<00:00,  1.15it/s, loss=2.46, v_num=, train_loss=2.460, train_acc=0.0729, val_loss=2.300, val_acc=0.117]`Trainer.fit` stopped: `max_steps=1` reached.

    Epoch 0: 100%|##########| 2/2 [00:01<00:00,  1.15it/s, loss=2.46, v_num=, train_loss=2.460, train_acc=0.0729, val_loss=2.300, val_acc=0.117]
737
738
739
740




741
.. GENERATED FROM PYTHON SOURCE LINES 456-484
742
743
744
745
746
747
748
749
750
751

.. note:: When ``fast_dev_run`` is turned off, we achieve a validation accuracy of 89.69% after training for 100 epochs.

Reproduce results in DARTS paper
--------------------------------

After a brief walkthrough of search + retrain process with one-shot strategy,
we then fill the gap between our results (89.69%) and the results in the `DARTS` paper.
This is because we didn't introduce some extra training tricks, including `DropPath <https://arxiv.org/pdf/1605.07648v4.pdf>`__,
Auxiliary loss, gradient clipping and augmentations like `Cutout <https://arxiv.org/pdf/1708.04552v2.pdf>`__.
752
753
They also train the deeper (20 cells) and wider (36 filters) networks for longer time (600 epochs).
Here we reproduce these tricks to get comparable results with DARTS paper.
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771


Evaluator
^^^^^^^^^

To implement these tricks, we first need to rewrite a few parts of evaluator.

Working with one-shot strategies, evaluators need to be implemented in the style of :ref:`PyTorch-Lightning <lightning-evaluator>`,
The full tutorial can be found in :doc:`/nas/evaluator`.
Putting it briefly, the core part of writing a new evaluator is to write a new LightningModule.
`LightingModule <https://pytorch-lightning.readthedocs.io/en/stable/common/lightning_module.html>`__ is a concept in
PyTorch-Lightning, which organizes the model training process into a list of functions, such as,
``training_step``, ``validation_step``, ``configure_optimizers``, etc.
Since we are merely adding a few ingredients to :class:`~nni.retiarii.evaluator.pytorch.Classification`,
we can simply inherit :class:`~nni.retiarii.evaluator.pytorch.ClassificationModule`, which is the underlying LightningModule
behind :class:`~nni.retiarii.evaluator.pytorch.Classification`.
This could look intimidating at first, but most of them are just plug-and-play tricks which you don't need to know details about.

772
.. GENERATED FROM PYTHON SOURCE LINES 485-540
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837

.. code-block:: default


    import torch
    from nni.retiarii.evaluator.pytorch import ClassificationModule

    class DartsClassificationModule(ClassificationModule):
        def __init__(
            self,
            learning_rate: float = 0.001,
            weight_decay: float = 0.,
            auxiliary_loss_weight: float = 0.4,
            max_epochs: int = 600
        ):
            self.auxiliary_loss_weight = auxiliary_loss_weight
            # Training length will be used in LR scheduler
            self.max_epochs = max_epochs
            super().__init__(learning_rate=learning_rate, weight_decay=weight_decay, export_onnx=False)

        def configure_optimizers(self):
            """Customized optimizer with momentum, as well as a scheduler."""
            optimizer = torch.optim.SGD(
                self.parameters(),
                momentum=0.9,
                lr=self.hparams.learning_rate,
                weight_decay=self.hparams.weight_decay
            )
            return {
                'optimizer': optimizer,
                'lr_scheduler': torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, self.max_epochs, eta_min=1e-3)
            }

        def training_step(self, batch, batch_idx):
            """Training step, customized with auxiliary loss."""
            x, y = batch
            if self.auxiliary_loss_weight:
                y_hat, y_aux = self(x)
                loss_main = self.criterion(y_hat, y)
                loss_aux = self.criterion(y_aux, y)
                self.log('train_loss_main', loss_main)
                self.log('train_loss_aux', loss_aux)
                loss = loss_main + self.auxiliary_loss_weight * loss_aux
            else:
                y_hat = self(x)
                loss = self.criterion(y_hat, y)
            self.log('train_loss', loss, prog_bar=True)
            for name, metric in self.metrics.items():
                self.log('train_' + name, metric(y_hat, y), prog_bar=True)
            return loss

        def on_train_epoch_start(self):
            # Set drop path probability before every epoch. This has no effect if drop path is not enabled in model.
            self.model.set_drop_path_prob(self.model.drop_path_prob * self.current_epoch / self.max_epochs)

            # Logging learning rate at the beginning of every epoch
            self.log('lr', self.trainer.optimizers[0].param_groups[0]['lr'])








838
.. GENERATED FROM PYTHON SOURCE LINES 541-545
839
840
841
842
843
844

The full evaluator is written as follows,
which simply wraps everything (except model space and search strategy of course), in a single object.
:class:`~nni.retiarii.evaluator.pytorch.Lightning` here is a special type of evaluator.
Don't forget to use the train/val data split specialized for search (1:1) here.

845
.. GENERATED FROM PYTHON SOURCE LINES 546-562
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872

.. code-block:: default


    from nni.retiarii.evaluator.pytorch import Lightning, Trainer

    max_epochs = 50

    evaluator = Lightning(
        DartsClassificationModule(0.025, 3e-4, 0., max_epochs),
        Trainer(
            gpus=1,
            max_epochs=max_epochs,
            fast_dev_run=fast_dev_run,
        ),
        train_dataloaders=search_train_loader,
        val_dataloaders=search_valid_loader
    )





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

873
    /data/data0/jiahang/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:447: LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.
874
875
876
877
878
879
880
881
882
883
      rank_zero_deprecation(
    GPU available: True (cuda), used: True
    TPU available: False, using: 0 TPU cores
    IPU available: False, using: 0 IPUs
    HPU available: False, using: 0 HPUs
    Running in `fast_dev_run` mode: will run the requested loop using 1 batch(es). Logging and checkpointing is suppressed.




884
.. GENERATED FROM PYTHON SOURCE LINES 563-571
885
886
887
888
889
890

Strategy
^^^^^^^^

:class:`~nni.retiarii.strategy.DARTS` strategy is created with gradient clip turned on.
If you are familiar with PyTorch-Lightning, you might aware that gradient clipping can be enabled in Lightning trainer.
891
However, enabling gradient clip in the trainer above won't work, because the underlying
892
893
894
implementation of :class:`~nni.retiarii.strategy.DARTS` strategy is based on
`manual optimization <https://pytorch-lightning.readthedocs.io/en/stable/common/optimization.html>`__.

895
.. GENERATED FROM PYTHON SOURCE LINES 572-575
896
897
898
899
900
901
902
903
904
905
906
907
908

.. code-block:: default


    strategy = DartsStrategy(gradient_clip_val=5.)








909
.. GENERATED FROM PYTHON SOURCE LINES 576-585
910
911
912
913
914
915
916
917
918

Launch experiment
^^^^^^^^^^^^^^^^^

Then we use the newly created evaluator and strategy to launch the experiment again.

.. warning::

   ``model_space`` has to be re-instantiated because a known limitation,
919
   i.e., one model space instance can't be reused across multiple experiments.
920

921
.. GENERATED FROM PYTHON SOURCE LINES 586-597
922
923
924
925

.. code-block:: default


926
    model_space = DartsSpace(width=16, num_cells=8, dataset='cifar')
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

    config = RetiariiExeConfig(execution_engine='oneshot')
    experiment = RetiariiExperiment(model_space, evaluator=evaluator, strategy=strategy)
    experiment.run(config)

    exported_arch = experiment.export_top_models()[0]

    exported_arch





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

944
    LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [3]
945
946
947
948
949
950
951
952
953

      | Name  | Type                      | Params
    ----------------------------------------------------
    0 | model | DartsClassificationModule | 3.0 M 
    ----------------------------------------------------
    3.0 M     Trainable params
    0         Non-trainable params
    3.0 M     Total params
    12.164    Total estimated model params size (MB)
954
    /data/data0/jiahang/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:1892: PossibleUserWarning: The number of training batches (1) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.
955
      rank_zero_warn(
956
957

    Training: 0it [00:00, ?it/s]
    Training:   0%|          | 0/1 [00:00<?, ?it/s]
    Epoch 0:   0%|          | 0/1 [00:00<?, ?it/s] 
    Epoch 0: 100%|##########| 1/1 [01:04<00:00, 64.95s/it]
    Epoch 0: 100%|##########| 1/1 [01:04<00:00, 64.95s/it, v_num=, train_loss=2.450, train_acc=0.0625]
    Epoch 0: 100%|##########| 1/1 [01:04<00:00, 64.96s/it, v_num=, train_loss=2.450, train_acc=0.0625]`Trainer.fit` stopped: `max_epochs=1` reached.

    Epoch 0: 100%|##########| 1/1 [01:04<00:00, 64.97s/it, v_num=, train_loss=2.450, train_acc=0.0625]
958

959
    {'normal/op_2_0': 'avg_pool_3x3', 'normal/input_2_0': 0, 'normal/op_2_1': 'avg_pool_3x3', 'normal/input_2_1': 1, 'normal/op_3_0': 'sep_conv_5x5', 'normal/input_3_0': 2, 'normal/op_3_1': 'avg_pool_3x3', 'normal/input_3_1': 0, 'normal/op_4_0': 'dil_conv_3x3', 'normal/input_4_0': 2, 'normal/op_4_1': 'sep_conv_3x3', 'normal/input_4_1': 0, 'normal/op_5_0': 'avg_pool_3x3', 'normal/input_5_0': 2, 'normal/op_5_1': 'dil_conv_5x5', 'normal/input_5_1': 4, 'reduce/op_2_0': 'sep_conv_3x3', 'reduce/input_2_0': 1, 'reduce/op_2_1': 'sep_conv_5x5', 'reduce/input_2_1': 0, 'reduce/op_3_0': 'avg_pool_3x3', 'reduce/input_3_0': 2, 'reduce/op_3_1': 'sep_conv_3x3', 'reduce/input_3_1': 0, 'reduce/op_4_0': 'max_pool_3x3', 'reduce/input_4_0': 1, 'reduce/op_4_1': 'dil_conv_5x5', 'reduce/input_4_1': 2, 'reduce/op_5_0': 'dil_conv_3x3', 'reduce/input_5_0': 3, 'reduce/op_5_1': 'max_pool_3x3', 'reduce/input_5_1': 4}
960
961
962



963
.. GENERATED FROM PYTHON SOURCE LINES 598-599
964
965
966

We get the following architecture when ``fast_dev_run`` is set to False. It takes around 8 hours on a P100 GPU.

967
.. GENERATED FROM PYTHON SOURCE LINES 600-636
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018

.. code-block:: default


    plot_double_cells({
        'normal/op_2_0': 'sep_conv_3x3',
        'normal/input_2_0': 0,
        'normal/op_2_1': 'sep_conv_3x3',
        'normal/input_2_1': 1,
        'normal/op_3_0': 'sep_conv_3x3',
        'normal/input_3_0': 1,
        'normal/op_3_1': 'skip_connect',
        'normal/input_3_1': 0,
        'normal/op_4_0': 'sep_conv_3x3',
        'normal/input_4_0': 0,
        'normal/op_4_1': 'max_pool_3x3',
        'normal/input_4_1': 1,
        'normal/op_5_0': 'sep_conv_3x3',
        'normal/input_5_0': 0,
        'normal/op_5_1': 'sep_conv_3x3',
        'normal/input_5_1': 1,
        'reduce/op_2_0': 'max_pool_3x3',
        'reduce/input_2_0': 0,
        'reduce/op_2_1': 'sep_conv_5x5',
        'reduce/input_2_1': 1,
        'reduce/op_3_0': 'dil_conv_5x5',
        'reduce/input_3_0': 2,
        'reduce/op_3_1': 'max_pool_3x3',
        'reduce/input_3_1': 0,
        'reduce/op_4_0': 'max_pool_3x3',
        'reduce/input_4_0': 0,
        'reduce/op_4_1': 'sep_conv_3x3',
        'reduce/input_4_1': 2,
        'reduce/op_5_0': 'max_pool_3x3',
        'reduce/input_5_0': 0,
        'reduce/op_5_1': 'skip_connect',
        'reduce/input_5_1': 2
    })




.. image-sg:: /tutorials/images/sphx_glr_darts_003.png
   :alt: darts
   :srcset: /tutorials/images/sphx_glr_darts_003.png
   :class: sphx-glr-single-img





1019
.. GENERATED FROM PYTHON SOURCE LINES 637-644
1020
1021
1022
1023
1024
1025
1026
1027
1028

Retrain
^^^^^^^

When retraining,
we extend the original dataloader to introduce another trick called `Cutout <https://arxiv.org/pdf/1708.04552v2.pdf>`__.
Cutout is a data augmentation technique that randomly masks out rectangular regions in images.
In CIFAR-10, the typical masked size is 16x16 (the image sizes are 32x32 in the dataset).

1029
.. GENERATED FROM PYTHON SOURCE LINES 645-671
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

.. code-block:: default


    def cutout_transform(img, length: int = 16):
        h, w = img.size(1), img.size(2)
        mask = np.ones((h, w), np.float32)
        y = np.random.randint(h)
        x = np.random.randint(w)

        y1 = np.clip(y - length // 2, 0, h)
        y2 = np.clip(y + length // 2, 0, h)
        x1 = np.clip(x - length // 2, 0, w)
        x2 = np.clip(x + length // 2, 0, w)

        mask[y1: y2, x1: x2] = 0.
        mask = torch.from_numpy(mask)
        mask = mask.expand_as(img)
        img *= mask
        return img

    transform_with_cutout = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
        cutout_transform,
    ])








1066
.. GENERATED FROM PYTHON SOURCE LINES 672-674
1067
1068
1069
1070

The train dataloader needs to be reinstantiated with the new transform.
The validation dataloader is not affected, and thus can be reused.

1071
.. GENERATED FROM PYTHON SOURCE LINES 675-679
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

.. code-block:: default


    train_data_cutout = nni.trace(CIFAR10)(root='./data', train=True, download=True, transform=transform_with_cutout)
    train_loader_cutout = DataLoader(train_data_cutout, batch_size=96)





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

    Files already downloaded and verified




1092
.. GENERATED FROM PYTHON SOURCE LINES 680-685
1093
1094
1095
1096
1097
1098
1099

We then create the final model based on the new exported architecture.
This time, auxiliary loss and drop path probability is enabled.

Following the same procedure as paper, we also increase the number of filters to 36, and number of cells to 20,
so as to reasonably increase the model size and boost the performance.

1100
.. GENERATED FROM PYTHON SOURCE LINES 686-690
1101
1102
1103
1104
1105

.. code-block:: default


    with fixed_arch(exported_arch):
1106
        final_model = DartsSpace(width=36, num_cells=20, dataset='cifar', auxiliary_loss=True, drop_path_prob=0.2)
1107
1108
1109
1110
1111
1112
1113
1114








1115
.. GENERATED FROM PYTHON SOURCE LINES 691-692
1116
1117
1118

We create a new evaluator for the retraining process, where the gradient clipping is put into the keyword arguments of trainer.

1119
.. GENERATED FROM PYTHON SOURCE LINES 693-710
1120
1121
1122
1123
1124
1125
1126
1127

.. code-block:: default


    max_epochs = 600

    evaluator = Lightning(
        DartsClassificationModule(0.025, 3e-4, 0.4, max_epochs),
1128
        trainer=Trainer(
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
            gpus=1,
            gradient_clip_val=5.,
            max_epochs=max_epochs,
            fast_dev_run=fast_dev_run
        ),
        train_dataloaders=train_loader_cutout,
        val_dataloaders=valid_loader,
    )

    evaluator.fit(final_model)





.. rst-class:: sphx-glr-script-out

 .. code-block:: none

1148
    /data/data0/jiahang/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/accelerator_connector.py:447: LightningDeprecationWarning: Setting `Trainer(gpus=1)` is deprecated in v1.7 and will be removed in v2.0. Please use `Trainer(accelerator='gpu', devices=1)` instead.
1149
1150
1151
1152
1153
1154
      rank_zero_deprecation(
    GPU available: True (cuda), used: True
    TPU available: False, using: 0 TPU cores
    IPU available: False, using: 0 IPUs
    HPU available: False, using: 0 HPUs
    Running in `fast_dev_run` mode: will run the requested loop using 1 batch(es). Logging and checkpointing is suppressed.
1155
    LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [3]
1156
1157
1158
1159
1160

      | Name      | Type             | Params
    -----------------------------------------------
    0 | criterion | CrossEntropyLoss | 0     
    1 | metrics   | ModuleDict       | 0     
1161
    2 | model     | DARTS            | 3.2 M 
1162
    -----------------------------------------------
1163
    3.2 M     Trainable params
1164
    0         Non-trainable params
1165
1166
1167
    3.2 M     Total params
    12.942    Total estimated model params size (MB)
    /data/data0/jiahang/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/connectors/data_connector.py:225: PossibleUserWarning: The dataloader, train_dataloader, does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` (try 56 which is the number of cpus on this machine) in the `DataLoader` init to improve performance.
1168
      rank_zero_warn(
1169
    /data/data0/jiahang/miniconda3/lib/python3.8/site-packages/pytorch_lightning/trainer/trainer.py:1892: PossibleUserWarning: The number of training batches (1) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.
1170
      rank_zero_warn(
1171
1172
1173

    Training: 0it [00:00, ?it/s]
    Training:   0%|          | 0/2 [00:00<?, ?it/s]
    Epoch 0:   0%|          | 0/2 [00:00<?, ?it/s] /data/data0/jiahang/miniconda3/lib/python3.8/site-packages/torchvision/transforms/functional_pil.py:41: DeprecationWarning: FLIP_LEFT_RIGHT is deprecated and will be removed in Pillow 10 (2023-07-01). Use Transpose.FLIP_LEFT_RIGHT instead.
      return img.transpose(Image.FLIP_LEFT_RIGHT)

    Epoch 0:  50%|#####     | 1/2 [00:00<00:00,  1.33it/s]
    Epoch 0:  50%|#####     | 1/2 [00:00<00:00,  1.33it/s, loss=3.47, v_num=, train_loss=3.470, train_acc=0.0625]
1174
1175
1176

    Validation: 0it [00:00, ?it/s]

    Validation:   0%|          | 0/1 [00:00<?, ?it/s]

    Validation DataLoader 0:   0%|          | 0/1 [00:00<?, ?it/s]
1177
1178
1179

    Validation DataLoader 0: 100%|##########| 1/1 [00:00<00:00,  3.13it/s]
    Epoch 0: 100%|##########| 2/2 [00:01<00:00,  1.20it/s, loss=3.47, v_num=, train_loss=3.470, train_acc=0.0625]
    Epoch 0: 100%|##########| 2/2 [00:01<00:00,  1.20it/s, loss=3.47, v_num=, train_loss=3.470, train_acc=0.0625, val_loss=2.300, val_acc=0.0938]

                                                                          
    Epoch 0: 100%|##########| 2/2 [00:01<00:00,  1.19it/s, loss=3.47, v_num=, train_loss=3.470, train_acc=0.0625, val_loss=2.300, val_acc=0.0938]`Trainer.fit` stopped: `max_steps=1` reached.

    Epoch 0: 100%|##########| 2/2 [00:01<00:00,  1.19it/s, loss=3.47, v_num=, train_loss=3.470, train_acc=0.0625, val_loss=2.300, val_acc=0.0938]
1180
1181
1182
1183




1184
.. GENERATED FROM PYTHON SOURCE LINES 711-725
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203

When ``fast_dev_run`` is turned off, after retraining, the architecture yields a top-1 accuracy of 97.12%.
If we take the best snapshot throughout the retrain process,
there is a chance that the top-1 accuracy will be 97.28%.

.. image:: ../../img/darts_val_acc.png

In the figure, the orange line is the validation accuracy curve after training for 600 epochs,
while the red line corresponding the previous version in this tutorial before adding all the training tricks and
only trains for 100 epochs.

The results outperforms "DARTS (first order) + cutout" in `DARTS`_ paper, which is only 97.00±0.14%.
It's even comparable with "DARTS (second order) + cutout" in the paper (97.24±0.09%),
though we didn't implement the second order version.
The implementation of second order DARTS is in our future plan, and we also welcome your contribution.


.. rst-class:: sphx-glr-timing

1204
   **Total running time of the script:** ( 1 minutes  53.716 seconds)
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227


.. _sphx_glr_download_tutorials_darts.py:

.. only:: html

  .. container:: sphx-glr-footer sphx-glr-footer-example


    .. container:: sphx-glr-download sphx-glr-download-python

      :download:`Download Python source code: darts.py <darts.py>`

    .. container:: sphx-glr-download sphx-glr-download-jupyter

      :download:`Download Jupyter notebook: darts.ipynb <darts.ipynb>`


.. only:: html

 .. rst-class:: sphx-glr-signature

    `Gallery generated by Sphinx-Gallery <https://sphinx-gallery.github.io>`_