pruning_experiments.py 15.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import argparse
import copy
from time import gmtime, strftime
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from tqdm import tqdm
import numpy as np

import nni
from nni.compression.pytorch import ModelSpeedup
from nni.algorithms.compression.pytorch.pruning import (
    LevelPruner,
    SlimPruner,
    FPGMPruner,
    TaylorFOWeightFilterPruner,
    L1FilterPruner,
    L2FilterPruner,
    AGPPruner,
    ActivationMeanRankFilterPruner,
    ActivationAPoZRankFilterPruner
)

from utils import *

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model_type = 'mobilenet_v2_torchhub'
input_size = 224
n_classes = 120

pruner_type_to_class = {'level': LevelPruner,
                        'l1': L1FilterPruner,
                        'l2': L2FilterPruner,
                        'slim': SlimPruner,
                        'fpgm': FPGMPruner,
                        'taylorfo': TaylorFOWeightFilterPruner,
                        'agp': AGPPruner,
                        'mean_activation': ActivationMeanRankFilterPruner,
                        'apoz': ActivationAPoZRankFilterPruner}


def run_eval(model, dataloader, device):
    model.eval()
    loss_func = nn.CrossEntropyLoss()
    acc_list, loss_list = [], []
    with torch.no_grad():
        for i, (inputs, labels) in enumerate(tqdm(dataloader)):
            inputs, labels = inputs.float().to(device), labels.to(device)
            preds= model(inputs)
            pred_idx = preds.max(1).indices
            acc = (pred_idx == labels).sum().item() / labels.size(0)
            acc_list.append(acc)
            loss = loss_func(preds, labels).item()
            loss_list.append(loss)

    final_loss = np.array(loss_list).mean()
    final_acc = np.array(acc_list).mean()

    return final_loss, final_acc


def run_finetune(model, train_dataloader, valid_dataloader, device,
                 n_epochs=2, learning_rate=1e-4, weight_decay=0.0, log=None):    
    criterion = nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)

    best_valid_acc = 0.0
    best_model = None
    for epoch in range(n_epochs):
        print('Start finetuning epoch {}'.format(epoch))
        loss_list = []

        # train
        model.train()
        for i, (inputs, labels) in enumerate(tqdm(train_dataloader)):
            optimizer.zero_grad()
            inputs, labels = inputs.float().to(device), labels.to(device)
            preds = model(inputs)
            loss = criterion(preds, labels)
            loss_list.append(loss.item())
            loss.backward()
            optimizer.step()
            
        # validation
        valid_loss, valid_acc = run_eval(model, valid_dataloader, device)
        train_loss = np.array(loss_list).mean()
        print('Epoch {}: train loss {:.4f}, valid loss {:.4f}, valid acc {:.4f}'.format
              (epoch, train_loss, valid_loss, valid_acc))
        if log is not None:
            log.write('Epoch {}: train loss {:.4f}, valid loss {:.4f}, valid acc {:.4f}'.format
                      (epoch, train_loss, valid_loss, valid_acc))

        if valid_acc > best_valid_acc:
            best_valid_acc = valid_acc
            best_model = copy.deepcopy(model).to(device)

    print("Best validation accuracy: {}".format(best_valid_acc))
    if log is not None:
        log.write("Best validation accuracy: {}".format(best_valid_acc))
    
    model = best_model
    return model


def run_finetune_distillation(student_model, teacher_model, train_dataloader, valid_dataloader, device,
                              alpha, temperature,
                              n_epochs=2, learning_rate=1e-4, weight_decay=0.0, log=None):
    optimizer = torch.optim.Adam(student_model.parameters(), lr=learning_rate, weight_decay=weight_decay)
    # optimizer = torch.optim.SGD(student_model.parameters(), lr=learning_rate, momentum=0.9)            

    best_valid_acc = 0.0
    best_model = None
    for epoch in range(n_epochs):
        print('Start finetuning with distillation epoch {}'.format(epoch))
        loss_list = []

        # train
        student_model.train()
        for i, (inputs, labels) in enumerate(tqdm(train_dataloader)):
            optimizer.zero_grad()
            inputs, labels = inputs.float().to(device), labels.to(device)
            with torch.no_grad():
                teacher_preds = teacher_model(inputs)
            
            preds = student_model(inputs)
            soft_loss = nn.KLDivLoss()(F.log_softmax(preds/temperature, dim=1),
                                       F.softmax(teacher_preds/temperature, dim=1))
            hard_loss = F.cross_entropy(preds, labels)
            loss = soft_loss * (alpha * temperature * temperature) + hard_loss * (1. - alpha)
            loss_list.append(loss.item())
            loss.backward()
            optimizer.step()

        # validation
        valid_loss, valid_acc = run_eval(student_model, valid_dataloader, device)
        train_loss = np.array(loss_list).mean()
        print('Epoch {}: train loss {:.4f}, valid loss {:.4f}, valid acc {:.4f}'.format
              (epoch, train_loss, valid_loss, valid_acc))
        if log is not None:
            log.write('Epoch {}: train loss {:.4f}, valid loss {:.4f}, valid acc {:.4f}'.format
                      (epoch, train_loss, valid_loss, valid_acc))
        
        if valid_acc > best_valid_acc:
            best_valid_acc = valid_acc
            best_model = copy.deepcopy(student_model).to(device)

    print("Best validation accuracy: {}".format(best_valid_acc))
    if log is not None:
        log.write("Best validation accuracy: {}".format(best_valid_acc))

    student_model = best_model
    return student_model


def trainer_helper(model, criterion, optimizer, dataloader, device):
    print("Running trainer in tuner")
    for epoch in range(1):
        model.train()
        for i, (inputs, labels) in enumerate(tqdm(dataloader)):
            optimizer.zero_grad()
            inputs, labels = inputs.float().to(device), labels.to(device)
            preds = model(inputs)
            loss = criterion(preds, labels)
            loss.backward()
            optimizer.step()


def trainer_helper_with_distillation(model, teacher_model, alpha, temperature, optimizer, dataloader, device):
    print("Running trainer in tuner")
    for epoch in range(1):
        model.train()
        for i, (inputs, labels) in enumerate(tqdm(dataloader)):
            optimizer.zero_grad()
            inputs, labels = inputs.float().to(device), labels.to(device)
            
            with torch.no_grad():
                teacher_preds = teacher_model(inputs)
            preds = model(inputs)
            soft_loss = nn.KLDivLoss()(F.log_softmax(preds/temperature, dim=1),
                                       F.softmax(teacher_preds/temperature, dim=1))
            hard_loss = F.cross_entropy(preds, labels)
            loss = soft_loss * (alpha * temperature * temperature) + hard_loss * (1. - alpha)
            loss.backward()
            optimizer.step()


def parse_args():
    parser = argparse.ArgumentParser(description='Example code for pruning MobileNetV2')

    parser.add_argument('--experiment_dir', type=str, required=True,
                        help='directory containing the pretrained model')
    parser.add_argument('--checkpoint_name', type=str, default='checkpoint_best.pt',
                         help='checkpoint of the pretrained model')
    
    # pruner
    parser.add_argument('--pruning_mode', type=str, default='conv1andconv2',
                        choices=['conv0', 'conv1', 'conv2', 'conv1andconv2', 'all'])
    parser.add_argument('--sparsity', type=float, default=0.5,
                        help='target sparsity')
    parser.add_argument('--pruner_name', type=str, default='l1',
                        choices=['l1', 'l2', 'slim', 'agp',
                                 'fpgm', 'mean_activation', 'apoz', 'taylorfo'],
                        help='pruner to use')
    # for agp only
    parser.add_argument('--agp_pruning_alg', default='l1',
                        choices=['l1', 'l2', 'slim', 'fpgm',
                                 'mean_activation', 'apoz', 'taylorfo'],
                        help='pruner to use for agp')
    parser.add_argument('--agp_n_iters', type=int, default=64,
                        help='number of iterations for agp')
    parser.add_argument('--agp_n_epochs_per_iter', type=int, default=1,
                        help='number of epochs per iteration for agp')

220
221
222
    # speedup
    parser.add_argument('--speedup', action='store_true', default=False,
                        help='Whether to speedup the pruned model')
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

    # finetuning parameters
    parser.add_argument('--n_workers', type=int, default=16,
                        help='number of threads')
    parser.add_argument('--finetune_epochs', type=int, default=180,
                        help='number of epochs to finetune the model')
    parser.add_argument('--learning_rate', type=float, default=1e-4)
    parser.add_argument('--weight_decay', type=float, default=0.0)
    parser.add_argument('--batch_size', type=int, default=32,
                        help='input batch size for training and inference')
    parser.add_argument('--kd', action='store_true', default=False,
                        help='Whether to use knowledge distillation')
    parser.add_argument('--alpha', type=float, default=0.99,
                        help='Alpha for knowledge distillation loss')
    parser.add_argument('--temp', type=float, default=8,
                        help='Temperature for knowledge distillation loss')

    args = parser.parse_args()
    return args


def run_pruning(args):
    print(args)
    torch.set_num_threads(args.n_workers)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    log = open(args.experiment_dir + '/pruning_{}_{}_sparsity{}_{}.log'.format(
        args.pruner_name, args.pruning_mode, args.sparsity,
        strftime("%Y%m%d%H%M", gmtime())), 'w')
    
    train_dataset = TrainDataset('./data/stanford-dogs/Processed/train')
    train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
    train_dataset_for_pruner = EvalDataset('./data/stanford-dogs/Processed/train')
    train_dataloader_for_pruner = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=False)
    valid_dataset = EvalDataset('./data/stanford-dogs/Processed/valid')
    valid_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False)
    test_dataset = EvalDataset('./data/stanford-dogs/Processed/test')
    test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)

    model = create_model(model_type=model_type, pretrained=False, n_classes=n_classes,
                         input_size=input_size, checkpoint=args.experiment_dir + '/' + args.checkpoint_name)
    model = model.to(device)

    teacher_model = None
    if args.kd:
        teacher_model = copy.deepcopy(model)

    # evaluation before pruning
    # count_flops(model, log, device)
    initial_loss, initial_acc = run_eval(model, test_dataloader, device)
    print('Before Pruning:\nLoss: {}\nAccuracy: {}'.format(initial_loss, initial_acc))
    log.write('Before Pruning:\nLoss: {}\nAccuracy: {}\n'.format(initial_loss, initial_acc))

    # set up config list and pruner
    config_list = []
    if 'conv0' in args.pruning_mode or args.pruning_mode == 'all':
        if args.pruner_name == 'slim' or (args.pruner_name == 'agp' and args.agp_pruning_alg == 'slim'):
            config_list.append({
                'op_names': ['features.{}.conv.0.1'.format(x) for x in range(2, 18)],
                'sparsity': args.sparsity
            })
        else:
            config_list.append({
                'op_names': ['features.{}.conv.0.0'.format(x) for x in range(2, 18)],
                'sparsity': args.sparsity
            })
    if 'conv1' in args.pruning_mode or args.pruning_mode == 'all':
        if args.pruner_name == 'slim' or (args.pruner_name == 'agp' and args.agp_pruning_alg == 'slim'):
            config_list.append({
                'op_names': ['features.{}.conv.1.1'.format(x) for x in range(2, 18)],
                'sparsity': args.sparsity
            })
        else:
            config_list.append({
                'op_names': ['features.{}.conv.1.0'.format(x) for x in range(2, 18)],
                'sparsity': args.sparsity
            })
    if 'conv2' in args.pruning_mode or args.pruning_mode == 'all':
        if args.pruner_name == 'slim' or (args.pruner_name == 'agp' and args.agp_pruning_alg == 'slim'):
            config_list.append({
                'op_names': ['features.{}.conv.3'.format(x) for x in range(2, 18)],
                'sparsity': args.sparsity
            })
        else:
            config_list.append({
                'op_names': ['features.{}.conv.2'.format(x) for x in range(2, 18)],
                'sparsity': args.sparsity
            })
    print(config_list)

    kwargs = {}
    if args.pruner_name in ['slim', 'taylorfo', 'mean_activation', 'apoz', 'agp']:
        def trainer(model, optimizer, criterion, epoch):
            if not args.kd:
                return trainer_helper(model, criterion, optimizer, train_dataloader, device)
            else:
                return trainer_helper_with_distillation(model, teacher_model, args.alpha, args.temp, optimizer, train_dataloader, device)
        kwargs = {
            'trainer': trainer,
            'optimizer': torch.optim.Adam(model.parameters()),
            'criterion': nn.CrossEntropyLoss()
        }
        if args.pruner_name  == 'agp':
            kwargs['pruning_algorithm'] = args.agp_pruning_alg
            kwargs['num_iterations'] = args.agp_n_iters
            kwargs['epochs_per_iteration'] = args.agp_n_epochs_per_iter
        if args.pruner_name == 'slim':
            kwargs['sparsifying_training_epochs'] = 10

    # pruning
    pruner = pruner_type_to_class[args.pruner_name](model, config_list, **kwargs)
    pruner.compress()
    pruner.export_model(args.experiment_dir + '/model_temp.pth', args.experiment_dir + './mask_temp.pth')
    
    # model speedup
    pruner._unwrap_model()
339
    if args.speedup:
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
        dummy_input = torch.rand(1,3,224,224).to(device)
        ms = ModelSpeedup(model, dummy_input, args.experiment_dir + './mask_temp.pth')
        ms.speedup_model()
        print(model)
        count_flops(model, log)

    intermediate_loss, intermediate_acc = run_eval(model, test_dataloader, device)
    print('Before Finetuning:\nLoss: {}\nAccuracy: {}'.format(intermediate_loss, intermediate_acc))
    log.write('Before Finetuning:\nLoss: {}\nAccuracy: {}\n'.format(intermediate_loss, intermediate_acc))

    # finetuning
    if args.kd:
        model = run_finetune_distillation(model, teacher_model, train_dataloader, valid_dataloader, device,
                                          args.alpha, args.temp, n_epochs=args.finetune_epochs,
                                          learning_rate=args.learning_rate, weight_decay=args.weight_decay)
    else:
        model = run_finetune(model, train_dataloader, valid_dataloader, device, n_epochs=args.finetune_epochs,
                             learning_rate=args.learning_rate, weight_decay=args.weight_decay)
        
    # final evaluation
    final_loss, final_acc = run_eval(model, test_dataloader, device)
    print('After Pruning:\nLoss: {}\nAccuracy: {}'.format(final_loss, final_acc))
    log.write('After Pruning:\nLoss: {}\nAccuracy: {}'.format(final_loss, final_acc))

    # clean up
    filePaths = [args.experiment_dir + '/model_tmp.pth', args.experiment_dir + '/mask_tmp.pth']
    for f in filePaths:
        if os.path.exists(f):
            os.remove(f)

    log.close()
    
    
if __name__ == '__main__':
    args = parse_args()
    run_pruning(args)