mixed_precision_speedup_mnist.py 5.2 KB
Newer Older
1
2
3
4
5
6
7
import torch
import torch.nn.functional as F
from torchvision import datasets, transforms

from nni.algorithms.compression.pytorch.quantization import QAT_Quantizer
from nni.compression.pytorch.quantization_speedup import ModelSpeedupTensorRT

8
9
10
import sys
sys.path.append('../models')
from mnist.naive import NaiveModel
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57


def train(model, device, train_loader, optimizer):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('{:2.0f}%  Loss {}'.format(100 * batch_idx / len(train_loader), loss.item()))

def test(model, device, test_loader):
    model.eval()
    test_loss = 0
    correct = 0
    with torch.no_grad():
        for data, target in test_loader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += F.nll_loss(output, target, reduction='sum').item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
    test_loss /= len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%)\n'.format(
        test_loss, 100 * correct / len(test_loader.dataset)))

def test_trt(engine, test_loader):
    test_loss = 0
    correct = 0
    time_elasped = 0
    for data, target in test_loader:
        output, time = engine.inference(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.argmax(dim=1, keepdim=True)
        correct += pred.eq(target.view_as(pred)).sum().item()
        time_elasped += time
    test_loss /= len(test_loader.dataset)

    print('Loss: {}  Accuracy: {}%'.format(
        test_loss, 100 * correct / len(test_loader.dataset)))
    print("Inference elapsed_time (whole dataset): {}s".format(time_elasped))

def post_training_quantization_example(train_loader, test_loader, device):
58
    model = NaiveModel()
59
60

    config = {
61
62
63
64
        'conv1':{'weight_bits':8, 'output_bits':8},
        'conv2':{'weight_bits':32, 'output_bits':32},
        'fc1':{'weight_bits':16, 'output_bits':16},
        'fc2':{'weight_bits':8, 'output_bits':8}
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    }

    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

    model.to(device)
    for epoch in range(1):
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer)
        test(model, device, test_loader)

    batch_size = 32
    input_shape = (batch_size, 1, 28, 28)

    engine = ModelSpeedupTensorRT(model, input_shape, config=config, calib_data_loader=train_loader, batchsize=batch_size)
    engine.compress()
    test_trt(engine, test_loader)

def quantization_aware_training_example(train_loader, test_loader, device):
83
    model = NaiveModel()
84
85

    configure_list = [{
86
87
            'quant_types': ['input', 'weight'],
            'quant_bits': {'input':8, 'weight':8},
88
89
90
91
92
93
            'op_names': ['conv1']
        }, {
            'quant_types': ['output'],
            'quant_bits': {'output':8},
            'op_names': ['relu1']
        }, {
94
95
            'quant_types': ['input', 'weight'],
            'quant_bits': {'input':8, 'weight':8},
96
97
98
99
100
101
102
103
104
            'op_names': ['conv2']
        }, {
            'quant_types': ['output'],
            'quant_bits': {'output':8},
            'op_names': ['relu2']
        }
    ]

    # finetune the model by using QAT
105
106
    # enable batchnorm folding mode
    dummy_input = torch.randn(1, 1, 28, 28)
107
    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
108
    quantizer = QAT_Quantizer(model, configure_list, optimizer, dummy_input=dummy_input)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    quantizer.compress()

    model.to(device)
    for epoch in range(1):
        print('# Epoch {} #'.format(epoch))
        train(model, device, train_loader, optimizer)
        test(model, device, test_loader)

    model_path = "mnist_model.pth"
    calibration_path = "mnist_calibration.pth"
    calibration_config = quantizer.export_model(model_path, calibration_path)

    test(model, device, test_loader)

    print("calibration_config: ", calibration_config)

    batch_size = 32
    input_shape = (batch_size, 1, 28, 28)

    engine = ModelSpeedupTensorRT(model, input_shape, config=calibration_config, batchsize=batch_size)
    engine.compress()

    test_trt(engine, test_loader)

def main():
    torch.manual_seed(0)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    trans = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
    train_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train=True, download=True, transform=trans),
        batch_size=64, shuffle=True)
    test_loader = torch.utils.data.DataLoader(
        datasets.MNIST('data', train=False, transform=trans),
        batch_size=1000, shuffle=True)

    # post-training quantization on TensorRT
    post_training_quantization_example(train_loader, test_loader, device)

    # combine NNI quantization algorithm QAT with backend framework TensorRT
    quantization_aware_training_example(train_loader, test_loader, device)

if __name__ == '__main__':
    main()