"vscode:/vscode.git/clone" did not exist on "db6e3a5ca9e84315d1abc80487bfe2ad874b4396"
test.py 6.62 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import sys
sys.path.insert(0, './pix2pixlib')

import os
import pathlib
import logging
import argparse
import json
from collections import namedtuple
from PIL import Image
import numpy as np
import torch
from nni.utils import merge_parameter
from pix2pixlib.data.aligned_dataset import AlignedDataset
from pix2pixlib.data import CustomDatasetDataLoader
from pix2pixlib.models.pix2pix_model import Pix2PixModel
from pix2pixlib.util.util import tensor2im
from base_params import get_base_params


_logger = logging.getLogger('example_pix2pix')


def download_dataset(dataset_name):
    # code adapted from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
    assert(dataset_name in ['facades', 'night2day', 'edges2handbags', 'edges2shoes', 'maps'])
    if os.path.exists('./data/' + dataset_name):
        _logger.info("Already downloaded dataset " + dataset_name)
    else:
        _logger.info("Downloading dataset " + dataset_name)
        if not os.path.exists('./data/'):
            pathlib.Path('./data/').mkdir(parents=True, exist_ok=True)
        pathlib.Path('./data/' + dataset_name).mkdir(parents=True, exist_ok=True)
        URL = 'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/{}.tar.gz'.format(dataset_name)
        TAR_FILE = './data/{}.tar.gz'.format(dataset_name)
        TARGET_DIR = './data/{}/'.format(dataset_name)
        os.system('wget -N {} -O {}'.format(URL, TAR_FILE))
        pathlib.Path(TARGET_DIR).mkdir(parents=True, exist_ok=True)
        os.system('tar -zxvf {} -C ./data/'.format(TAR_FILE))
        os.system('rm ' + TAR_FILE)        

        
def parse_args():
    parser = argparse.ArgumentParser(description='PyTorch Pix2pix Example')

    # required arguments
    parser.add_argument('-c', '--checkpoint', type=str, required=True,
                        help='Checkpoint directory')
    parser.add_argument('-p', '--parameter_cfg', type=str, required=True,
                        help='parameter.cfg file generated by nni trial')
    parser.add_argument('-d', '--dataset', type=str, required=True,
                        help='dataset name (facades, night2day, edges2handbags, edges2shoes, maps)')
    parser.add_argument('-o', '--output_dir', type=str, required=True,
                        help='Where to save the test results')
    
    # Settings that may be overrided by parameters from nni
    parser.add_argument('--ngf', type=int, default=64, 
                        help='# of generator filters in the last conv layer')
    parser.add_argument('--ndf', type=int, default=64,
                        help='# of discriminator filters in the first conv layer')
    parser.add_argument('--netD', type=str, default='basic',
                        help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator')
    parser.add_argument('--netG', type=str, default='resnet_9blocks',
                        help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]')
    parser.add_argument('--init_type', type=str, default='normal',
                        help='network initialization [normal | xavier | kaiming | orthogonal]')
    parser.add_argument('--beta1', type=float, default=0.5,
                        help='momentum term of adam')
    parser.add_argument('--lr', type=float, default=0.0002,
                        help='initial learning rate for adam')
    parser.add_argument('--lr_policy', type=str, default='linear',
                        help='learning rate policy. [linear | step | plateau | cosine]')
    parser.add_argument('--gan_mode', type=str, default='lsgan',
                        help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.')
    parser.add_argument('--norm', type=str, default='instance',
                        help='instance normalization or batch normalization [instance | batch | none]')
    parser.add_argument('--lambda_L1', type=float, default=100,
                        help='weight of L1 loss in the generator objective')
    
    # Additional training settings 
    parser.add_argument('--batch_size', type=int, default=1,
                        help='input batch size for training (default: 1)')
    parser.add_argument('--n_epochs', type=int, default=100,
                        help='number of epochs with the initial learning rate')
    parser.add_argument('--n_epochs_decay', type=int, default=100,
                        help='number of epochs to linearly decay learning rate to zero')
    
    args, _ = parser.parse_known_args()
    return args


def main(test_params):
    test_config = namedtuple('Struct', test_params.keys())(*test_params.values())
    assert os.path.exists(test_config.checkpoint), "Checkpoint does not exist"

    download_dataset(test_config.dataset)
    
    test_dataset = AlignedDataset(test_config)
    test_dataset = CustomDatasetDataLoader(test_config, test_dataset)
    _logger.info('Number of testing images = {}'.format(len(test_dataset)))    

    model = Pix2PixModel(test_config)
    model.setup(test_config)

    if test_config.eval:
        model.eval()

    for i, data in enumerate(test_dataset):
        print('Testing on {} image {}'.format(test_config.dataset, i), end='\r')
        model.set_input(data)  
        model.test()

        visuals = model.get_current_visuals()
        cur_input = tensor2im(visuals['real_A'])
        cur_label = tensor2im(visuals['real_B'])
        cur_output = tensor2im(visuals['fake_B'])
        
        image_name = '{}_test_{}.png'.format(test_config.dataset, i)
        Image.fromarray(cur_input).save(os.path.join(test_config.output_dir, 'input', image_name))
        Image.fromarray(cur_label).save(os.path.join(test_config.output_dir, 'label', image_name))
        Image.fromarray(cur_output).save(os.path.join(test_config.output_dir, 'output', image_name))

    _logger.info("Images successfully saved to " + test_config.output_dir)

    
if __name__ == '__main__':
    params_from_cl = vars(parse_args())
    _, test_params = get_base_params(params_from_cl['dataset'], params_from_cl['checkpoint'])  
    test_params.update(params_from_cl)

    with open(test_params['parameter_cfg'], 'r') as f:
        params_from_nni = json.loads(f.readline().strip())['parameters']
    test_params = merge_parameter(test_params, params_from_nni)

    pathlib.Path(params_from_cl['output_dir'] + '/input').mkdir(parents=True, exist_ok=True)
    pathlib.Path(params_from_cl['output_dir'] + '/label').mkdir(parents=True, exist_ok=True)
    pathlib.Path(params_from_cl['output_dir'] + '/output').mkdir(parents=True, exist_ok=True)

    main(test_params)