pix2pix.py 8.35 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import sys
sys.path.insert(0, './pix2pixlib')

import os
import pathlib
import logging
import time
import argparse
from collections import namedtuple
import numpy as np
import torch
import torch.utils.data as data
import nni
from nni.utils import merge_parameter
from pix2pixlib.data.aligned_dataset import AlignedDataset
from pix2pixlib.models.pix2pix_model import Pix2PixModel
from base_params import get_base_params


_logger = logging.getLogger('example_pix2pix')


class CustomDatasetDataLoader():
    """Wrapper class of Dataset class that performs multi-threaded data loading"""

    def __init__(self, opt, ds):
        """Initialize this class
        Step 1: create a dataset instance given the name [dataset_mode]
        Step 2: create a multi-threaded data loader.
        """
        self.opt = opt
        self.dataset = ds
        self.dataloader = data.DataLoader(self.dataset,
                                          batch_size=opt.batch_size,
                                          shuffle=not opt.serial_batches,
                                          num_workers=int(opt.num_threads))

    def load_data(self):
        return self

    def __len__(self):
        """Return the number of data in the dataset"""
        return min(len(self.dataset), self.opt.max_dataset_size)

    def __iter__(self):
        """Return a batch of data"""
        for i, data in enumerate(self.dataloader):
            if i * self.opt.batch_size >= self.opt.max_dataset_size:
                break
            yield data


def download_dataset(dataset_name):
    # code adapted from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
    assert(dataset_name in ['facades', 'night2day', 'edges2handbags', 'edges2shoes', 'maps'])
    if os.path.exists('./data/' + dataset_name):
        _logger.info("Already downloaded dataset " + dataset_name)
    else:
        _logger.info("Downloading dataset " + dataset_name)
        if not os.path.exists('./data/'):
            pathlib.Path('./data/').mkdir(parents=True, exist_ok=True)
        pathlib.Path('./data/' + dataset_name).mkdir(parents=True, exist_ok=True)
        URL = 'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/{}.tar.gz'.format(dataset_name)
        TAR_FILE = './data/{}.tar.gz'.format(dataset_name)
        TARGET_DIR = './data/{}/'.format(dataset_name)
        os.system('wget -N {} -O {}'.format(URL, TAR_FILE))
        pathlib.Path(TARGET_DIR).mkdir(parents=True, exist_ok=True)
        os.system('tar -zxvf {} -C ./data/'.format(TAR_FILE))
        os.system('rm ' + TAR_FILE)        
    

def setup_trial_checkpoint_dir():
    checkpoint_dir = os.environ['NNI_OUTPUT_DIR'] + '/checkpoints/'
    pathlib.Path(checkpoint_dir).mkdir(parents=True, exist_ok=True)
    return checkpoint_dir
        

def parse_args():
    # Settings that may be overrided by parameters from nni
    parser = argparse.ArgumentParser(description='PyTorch Pix2pix Example')
    parser.add_argument('--ngf', type=int, default=64,
                        help='# of generator filters in the last conv layer')
    parser.add_argument('--ndf', type=int, default=64,
                        help='# of discriminator filters in the first conv layer')
    parser.add_argument('--netD', type=str, default='basic',
                        help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator')
    parser.add_argument('--netG', type=str, default='resnet_9blocks',
                        help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]')
    parser.add_argument('--init_type', type=str, default='normal',
                        help='network initialization [normal | xavier | kaiming | orthogonal]')
    parser.add_argument('--beta1', type=float, default=0.5,
                        help='momentum term of adam')
    parser.add_argument('--lr', type=float, default=0.0002,
                        help='initial learning rate for adam')
    parser.add_argument('--lr_policy', type=str, default='linear',
                        help='learning rate policy. [linear | step | plateau | cosine]')
    parser.add_argument('--gan_mode', type=str, default='lsgan',
                        help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.')
    parser.add_argument('--norm', type=str, default='instance',
                        help='instance normalization or batch normalization [instance | batch | none]')
    parser.add_argument('--lambda_L1', type=float, default=100,
                        help='weight of L1 loss in the generator objective')
    
    # Additional training settings 
    parser.add_argument('--batch_size', type=int, default=1,
                        help='input batch size for training (default: 1)')
    parser.add_argument('--n_epochs', type=int, default=100,
                        help='number of epochs with the initial learning rate')
    parser.add_argument('--n_epochs_decay', type=int, default=100,
                        help='number of epochs to linearly decay learning rate to zero')
    
    args, _ = parser.parse_known_args()
    return args
  

def evaluate_L1(config, model, dataset):
    if config.eval:
        model.eval()
    scores = []
    for i, data in enumerate(dataset):
        model.set_input(data)  # unpack data from data loader
        model.test()           # run inference
        visuals = model.get_current_visuals()
        score = torch.mean(torch.abs(visuals['fake_B']-visuals['real_B'])).detach().cpu().numpy()
        scores.append(score)
    return np.mean(np.array(scores))
            

def main(dataset_name, train_params, test_params):
    download_dataset(dataset_name)
    
    train_config = namedtuple('Struct', train_params.keys())(*train_params.values())
    test_config = namedtuple('Struct', test_params.keys())(*test_params.values())
    
    train_dataset, test_dataset = AlignedDataset(train_config), AlignedDataset(test_config)
    print(train_dataset, train_config)
    train_dataset = CustomDatasetDataLoader(train_config, train_dataset)
    test_dataset = CustomDatasetDataLoader(test_config, test_dataset)
    _logger.info('Number of training images = {}'.format(len(train_dataset)))
    _logger.info('Number of testing images = {}'.format(len(test_dataset)))    

    model = Pix2PixModel(train_config)
    model.setup(train_config)

    # training 
    total_iters = 0                # the total number of training iterations
    for epoch in range(train_config.epoch_count, train_config.n_epochs + train_config.n_epochs_decay + 1):
        _logger.info('Training epoch {}'.format(epoch))
        epoch_start_time = time.time()  # timer for entire epoch
        iter_data_time = time.time()    # timer for data loading per iteration
        epoch_iter = 0
        model.update_learning_rate()
        for i, data in enumerate(train_dataset):  # inner loop within one epoch
            iter_start_time = time.time()  # timer for computation per iteration
            if total_iters % train_config.print_freq == 0:
                t_data = iter_start_time - iter_data_time
            total_iters += train_config.batch_size
            epoch_iter += train_config.batch_size
            model.set_input(data)         # unpack data from dataset and apply preprocessing
            model.optimize_parameters()   # calculate loss functions, get gradients, update network weights
            iter_data_time = time.time()
        _logger.info('End of epoch {} / {} \t Time Taken: {} sec'.format(epoch, train_config.n_epochs + train_config.n_epochs_decay, time.time() - epoch_start_time))
    
    model.save_networks('latest')
    _logger.info("Training done. Saving the final model.")
    
    l1_score = evaluate_L1(test_config, model, test_dataset)
    _logger.info("The final L1 loss the test set is {}".format(l1_score))  
    nni.report_final_result(l1_score)

    
if __name__ == '__main__':
    dataset_name = 'facades'

    checkpoint_dir = setup_trial_checkpoint_dir()

    params_from_cl = vars(parse_args())
    params_for_tuning = nni.get_next_parameter()       
    train_params, test_params = get_base_params(dataset_name, checkpoint_dir)
    train_params.update(params_from_cl)
    test_params.update(params_from_cl)
    train_params = merge_parameter(train_params, params_for_tuning)
        
    main(dataset_name, train_params, test_params)