mnist.py 5.99 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
'''
mnist.py is an example to show: how to use iterative search space to tune architecture network for mnist.
'''
from __future__ import absolute_import, division, print_function

import logging
import math
import tempfile
import time
import argparse

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

import nni

logger = logging.getLogger('mnist_nested_search_space')
FLAGS = None

class MnistNetwork(object):
    def __init__(self, params, feature_size = 784):
        config = []

        for i in range(4):
            config.append(params['layer'+str(i)])
        self.config = config
        self.feature_size = feature_size
        self.label_size = 10


    def is_expand_dim(self, input):
        # input is a tensor
        shape = len(input.get_shape().as_list())
        if shape < 4:
            return True
        return False


    def is_flatten(self, input):
        # input is a tensor
        shape = len(input.get_shape().as_list())
        if shape > 2:
            return True
        return False


    def get_layer(self, layer_config, input, in_height, in_width, id):
        if layer_config[0] == 'Empty':
            return input

        if self.is_expand_dim(input):
            input = tf.reshape(input, [-1, in_height, in_width, 1])
        h, w = layer_config[1], layer_config[2]

        if layer_config[0] == 'Conv':
            conv_filter = tf.Variable(tf.random_uniform([h, w, 1, 1]), name='id_%d_conv_%d_%d' % (id, h, w))
            return tf.nn.conv2d(input, filter=conv_filter, strides=[1, 1, 1, 1], padding='SAME')
        if layer_config[0] == 'Max_pool':
            return tf.nn.max_pool(input, ksize=[1, h, w, 1], strides=[1, 1, 1, 1], padding='SAME')
        if layer_config[0] == 'Avg_pool':
            return tf.nn.avg_pool(input, ksize=[1, h, w, 1], strides=[1, 1, 1, 1], padding='SAME')

        print('error:', layer_config)
        raise Exception('%s layer is illegal'%layer_config[0])


    def build_network(self):
        layer_configs = self.config
        feature_size = 784

        # define placeholder
        self.x = tf.placeholder(tf.float32, [None, feature_size], name="input_x")
        self.y = tf.placeholder(tf.int32, [None, self.label_size], name="input_y")
        label_number = 10

        # define network
        input_layer = self.x
        in_height = in_width = int(math.sqrt(feature_size))
        for i, layer_config in enumerate(layer_configs):
            input_layer = tf.nn.relu(self.get_layer(layer_config, input_layer, in_height, in_width, i))

        output_layer = input_layer
        if self.is_flatten(output_layer):
            output_layer = tf.contrib.layers.flatten(output_layer)  # flatten
        output_layer = tf.layers.dense(output_layer, label_number)
        child_logit = tf.nn.softmax_cross_entropy_with_logits(logits=output_layer, labels=self.y)
        child_loss = tf.reduce_mean(child_logit)

        self.train_step = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(child_loss)
        child_accuracy = tf.equal(tf.argmax(output_layer, 1), tf.argmax(self.y, 1))
        self.accuracy = tf.reduce_mean(tf.cast(child_accuracy, "float"))  # add a reduce_mean

def download_mnist_retry(data_dir, max_num_retries=20):
    """Try to download mnist dataset and avoid errors"""
    for _ in range(max_num_retries):
        try:
            return input_data.read_data_sets(data_dir, one_hot=True)
        except tf.errors.AlreadyExistsError:
            time.sleep(1)
    raise Exception("Failed to download MNIST.")

def main(params):
    # Import data
    mnist = download_mnist_retry(params['data_dir'])

    # Create the model
    # Build the graph for the deep net
    mnist_network = MnistNetwork(params)
    mnist_network.build_network()
    print('build network done.')

    # Write log
    graph_location = tempfile.mkdtemp()
    #print('Saving graph to: %s' % graph_location)
    train_writer = tf.summary.FileWriter(graph_location)
    train_writer.add_graph(tf.get_default_graph())

    test_acc = 0.0
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for i in range(params['batch_num']):
            batch = mnist.train.next_batch(params['batch_size'])
            mnist_network.train_step.run(feed_dict={mnist_network.x: batch[0], mnist_network.y: batch[1]})

            if i % 100 == 0:
                train_accuracy = mnist_network.accuracy.eval(feed_dict={
                    mnist_network.x: batch[0], mnist_network.y: batch[1]})
                print('step %d, training accuracy %g' % (i, train_accuracy))

        test_acc = mnist_network.accuracy.eval(feed_dict={
            mnist_network.x: mnist.test.images, mnist_network.y: mnist.test.labels})

        nni.report_final_result(test_acc)

def get_params():
    ''' Get parameters from command line '''
    parser = argparse.ArgumentParser()
    parser.add_argument("--data_dir", type=str, default='/tmp/tensorflow/mnist/input_data', help="data directory")
    parser.add_argument("--batch_num", type=int, default=1000)
    parser.add_argument("--batch_size", type=int, default=200)
    args, _ = parser.parse_known_args()
    return args

def parse_init_json(data):
    params = {}
    for key in data:
        value = data[key]
        layer_name = value["_name"]
        if layer_name == 'Empty':
            # Empty Layer
            params[key] = ['Empty']
        elif layer_name == 'Conv':
            # Conv layer
            params[key] = [layer_name, value['kernel_size'], value['kernel_size']]
        else:
            # Pooling Layer
            params[key] = [layer_name, value['pooling_size'], value['pooling_size']]
    return params


if __name__ == '__main__':
    try:
        # get parameters form tuner
        data = nni.get_next_parameter()
        logger.debug(data)

        RCV_PARAMS = parse_init_json(data)
        logger.debug(RCV_PARAMS)
        params = vars(get_params())
        params.update(RCV_PARAMS)
        print(RCV_PARAMS)

        main(params)
    except Exception as exception:
        logger.exception(exception)
        raise