evaluate.py 5.69 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

'''
Evaluation scripts for QA model.
'''

from __future__ import print_function
from collections import Counter
import string
import re
import argparse
import json
import sys

def normalize_answer(str_input):
    """Lower text and remove punctuation, articles and extra whitespace."""
    def remove_articles(text):
        '''
        Remove "a|an|the"
        '''
        return re.sub(r'\b(a|an|the)\b', ' ', text)

    def white_space_fix(text):
        '''
        Remove unnessary whitespace
        '''
        return ' '.join(text.split())

    def remove_punc(text):
        '''
        Remove punc
        '''
        exclude = set(string.punctuation)
        return ''.join(ch for ch in text if ch not in exclude)

    def lower(text):
        '''
        Change string to lower form.
        '''
        return text.lower()

    return white_space_fix(remove_articles(remove_punc(lower(str_input))))

def f1_score(prediction, ground_truth):
    '''
    Calculate the f1 score.
    '''
    prediction_tokens = normalize_answer(prediction).split()
    ground_truth_tokens = normalize_answer(ground_truth).split()
    common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
    num_same = sum(common.values())
    if num_same == 0:
        return 0
    precision = 1.0 * num_same / len(prediction_tokens)
    recall = 1.0 * num_same / len(ground_truth_tokens)
    f1_result = (2 * precision * recall) / (precision + recall)
    return f1_result

def exact_match_score(prediction, ground_truth):
    '''
    Calculate the match score with prediction and ground truth.
    '''
    return normalize_answer(prediction) == normalize_answer(ground_truth)

def metric_max_over_ground_truths(metric_fn, prediction, ground_truths):
    '''
    Metric max over the ground truths.
    '''
    scores_for_ground_truths = []
    for ground_truth in ground_truths:
        score = metric_fn(prediction, ground_truth)
        scores_for_ground_truths.append(score)
    return max(scores_for_ground_truths)

def _evaluate(dataset, predictions):
    '''
    Evaluate function.
    '''
    f1_result = exact_match = total = 0
    count = 0
    for article in dataset:
        for paragraph in article['paragraphs']:
            for qa_pair in paragraph['qas']:
                total += 1
                if qa_pair['id'] not in predictions:
                    count += 1
                    continue
                ground_truths = list(map(lambda x: x['text'], qa_pair['answers']))
                prediction = predictions[qa_pair['id']]
                exact_match += metric_max_over_ground_truths(
                    exact_match_score, prediction, ground_truths)
                f1_result += metric_max_over_ground_truths(
                    f1_score, prediction, ground_truths)
    print('total', total, 'exact_match', exact_match, 'unanswer_question ', count)
    exact_match = 100.0 * exact_match / total
    f1_result = 100.0 * f1_result / total
    return {'exact_match': exact_match, 'f1': f1_result}

def evaluate(data_file, pred_file):
    '''
    Evaluate.
    '''
    expected_version = '1.1'
    with open(data_file) as dataset_file:
        dataset_json = json.load(dataset_file)
        if dataset_json['version'] != expected_version:
            print('Evaluation expects v-' + expected_version +
                  ', but got dataset with v-' + dataset_json['version'],
                  file=sys.stderr)
        dataset = dataset_json['data']
    with open(pred_file) as prediction_file:
        predictions = json.load(prediction_file)
    # print(json.dumps(evaluate(dataset, predictions)))
    result = _evaluate(dataset, predictions)
    # print('em:', result['exact_match'], 'f1:', result['f1'])
    return result['exact_match']

def evaluate_with_predictions(data_file, predictions):
    '''
    Evalutate with predictions/
    '''
    expected_version = '1.1'
    with open(data_file) as dataset_file:
        dataset_json = json.load(dataset_file)
        if dataset_json['version'] != expected_version:
            print('Evaluation expects v-' + expected_version +
                  ', but got dataset with v-' + dataset_json['version'],
                  file=sys.stderr)
        dataset = dataset_json['data']
    result = _evaluate(dataset, predictions)
    return result['exact_match']

if __name__ == '__main__':
    EXPECT_VERSION = '1.1'
    parser = argparse.ArgumentParser(
        description='Evaluation for SQuAD ' + EXPECT_VERSION)
    parser.add_argument('dataset_file', help='Dataset file')
    parser.add_argument('prediction_file', help='Prediction File')
    args = parser.parse_args()
    print(evaluate(args.dataset_file, args.prediction_file))