attention.py 6.32 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright (c) Microsoft Corporation
# All rights reserved.
#
# MIT License
#
# Permission is hereby granted, free of charge,
# to any person obtaining a copy of this software and associated
# documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and
# to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included
# in all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
# BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
# DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

import math

import tensorflow as tf
from tensorflow.python.ops.rnn_cell_impl import RNNCell


def _get_variable(variable_dict, name, shape, initializer=None, dtype=tf.float32):
    if name not in variable_dict:
        variable_dict[name] = tf.get_variable(
            name=name, shape=shape, initializer=initializer, dtype=dtype)
    return variable_dict[name]

class DotAttention:
    '''
    DotAttention
    '''
    def __init__(self, name,
                 hidden_dim,
                 is_vanilla=True,
                 is_identity_transform=False,
                 need_padding=False):
        self._name = '/'.join([name, 'dot_att'])
        self._hidden_dim = hidden_dim
        self._is_identity_transform = is_identity_transform
        self._need_padding = need_padding
        self._is_vanilla = is_vanilla
        self._var = {}

    @property
    def is_identity_transform(self):
        return self._is_identity_transform

    @property
    def is_vanilla(self):
        return self._is_vanilla

    @property
    def need_padding(self):
        return self._need_padding

    @property
    def hidden_dim(self):
        return self._hidden_dim

    @property
    def name(self):
        return self._name

    @property
    def var(self):
        return self._var

    def _get_var(self, name, shape, initializer=None):
        with tf.variable_scope(self.name):
            return _get_variable(self.var, name, shape, initializer)

    def _define_params(self, src_dim, tgt_dim):
        hidden_dim = self.hidden_dim
        self._get_var('W', [src_dim, hidden_dim])
        if not self.is_vanilla:
            self._get_var('V', [src_dim, hidden_dim])
            if self.need_padding:
                self._get_var('V_s', [src_dim, src_dim])
                self._get_var('V_t', [tgt_dim, tgt_dim])
            if not self.is_identity_transform:
                self._get_var('T', [tgt_dim, src_dim])
        self._get_var('U', [tgt_dim, hidden_dim])
        self._get_var('b', [1, hidden_dim])
        self._get_var('v', [hidden_dim, 1])

    def get_pre_compute(self, s):
        '''
        :param s: [src_sequence, batch_size, src_dim]
        :return: [src_sequence, batch_size. hidden_dim]
        '''
        hidden_dim = self.hidden_dim
        src_dim = s.get_shape().as_list()[-1]
        assert src_dim is not None, 'src dim must be defined'
        W = self._get_var('W', shape=[src_dim, hidden_dim])
        b = self._get_var('b', shape=[1, hidden_dim])
        return tf.tensordot(s, W, [[2], [0]]) + b

    def get_prob(self, src, tgt, mask, pre_compute, return_logits=False):
        '''
        :param s: [src_sequence_length, batch_size, src_dim]
        :param h: [batch_size, tgt_dim] or [tgt_sequence_length, batch_size, tgt_dim]
        :param mask: [src_sequence_length, batch_size]\
             or [tgt_sequence_length, src_sequence_length, batch_sizse]
        :param pre_compute: [src_sequence_length, batch_size, hidden_dim]
        :return: [src_sequence_length, batch_size]\
             or [tgt_sequence_length, src_sequence_length, batch_size]
        '''
        s_shape = src.get_shape().as_list()
        h_shape = tgt.get_shape().as_list()
        src_dim = s_shape[-1]
        tgt_dim = h_shape[-1]
        assert src_dim is not None, 'src dimension must be defined'
        assert tgt_dim is not None, 'tgt dimension must be defined'

        self._define_params(src_dim, tgt_dim)

        if len(h_shape) == 2:
            tgt = tf.expand_dims(tgt, 0)
        if pre_compute is None:
            pre_compute = self.get_pre_compute(src)

        buf0 = pre_compute
        buf1 = tf.tensordot(tgt, self.var['U'], axes=[[2], [0]])
        buf2 = tf.tanh(tf.expand_dims(buf0, 0) + tf.expand_dims(buf1, 1))

        if not self.is_vanilla:
            xh1 = tgt
            xh2 = tgt
            s1 = src
            if self.need_padding:
                xh1 = tf.tensordot(xh1, self.var['V_t'], 1)
                xh2 = tf.tensordot(xh2, self.var['S_t'], 1)
                s1 = tf.tensordot(s1, self.var['V_s'], 1)
            if not self.is_identity_transform:
                xh1 = tf.tensordot(xh1, self.var['T'], 1)
                xh2 = tf.tensordot(xh2, self.var['T'], 1)
            buf3 = tf.expand_dims(s1, 0) * tf.expand_dims(xh1, 1)
            buf3 = tf.tanh(tf.tensordot(buf3, self.var['V'], axes=[[3], [0]]))
            buf = tf.reshape(tf.tanh(buf2 + buf3), shape=tf.shape(buf3))
        else:
            buf = buf2
        v = self.var['v']
        e = tf.tensordot(buf, v, [[3], [0]])
        e = tf.squeeze(e, axis=[3])
        tmp = tf.reshape(e + (mask - 1) * 10000.0, shape=tf.shape(e))
        prob = tf.nn.softmax(tmp, 1)
        if len(h_shape) == 2:
            prob = tf.squeeze(prob, axis=[0])
            tmp = tf.squeeze(tmp, axis=[0])
        if return_logits:
            return prob, tmp
        return prob

    def get_att(self, s, prob):
        '''
        :param s: [src_sequence_length, batch_size, src_dim]
        :param prob: [src_sequence_length, batch_size]\
            or [tgt_sequence_length, src_sequence_length, batch_size]
        :return: [batch_size, src_dim] or [tgt_sequence_length, batch_size, src_dim]
        '''
        buf = s * tf.expand_dims(prob, axis=-1)
        att = tf.reduce_sum(buf, axis=-3)
        return att