nasbench201.py 8.91 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import argparse
import json
import logging
import os
import pprint

import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from nni.algorithms.nas.pytorch.darts import DartsTrainer
from nni.algorithms.nas.pytorch import enas
from nni.nas.pytorch.utils import AverageMeterGroup
from nni.nas.pytorch.nasbench201 import NASBench201Cell
from nni.nas.pytorch.fixed import apply_fixed_architecture
from nni.nas.benchmarks.nasbench201 import query_nb201_trial_stats
from nni.nas.pytorch.callbacks import ArchitectureCheckpoint, LRSchedulerCallback
from utils import accuracy, reward_accuracy

import datasets

logger = logging.getLogger('nni')

class ReLUConvBN(nn.Module):
    def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation,
                 bn_affine=True, bn_momentum=0.1, bn_track_running_stats=True):
        super(ReLUConvBN, self).__init__()
        self.op = nn.Sequential(
            nn.ReLU(inplace=False),
            nn.Conv2d(C_in, C_out, kernel_size, stride=stride,
                      padding=padding, dilation=dilation, bias=False),
            nn.BatchNorm2d(C_out, affine=bn_affine, momentum=bn_momentum,
                           track_running_stats=bn_track_running_stats)
        )

    def forward(self, x):
        return self.op(x)


class ResNetBasicBlock(nn.Module):
    def __init__(self, inplanes, planes, stride, bn_affine=True,
                 bn_momentum=0.1, bn_track_running_stats=True):
        super(ResNetBasicBlock, self).__init__()
        assert stride == 1 or stride == 2, "invalid stride {:}".format(stride)
        self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1, bn_affine, bn_momentum, bn_track_running_stats)
        self.conv_b = ReLUConvBN(planes, planes, 3, 1, 1, 1, bn_affine, bn_momentum, bn_track_running_stats)
        if stride == 2:
            self.downsample = nn.Sequential(
                nn.AvgPool2d(kernel_size=2, stride=2, padding=0),
                nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False))
        elif inplanes != planes:
            self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1, bn_affine, bn_momentum, bn_track_running_stats)
        else:
            self.downsample = None
        self.in_dim = inplanes
        self.out_dim = planes
        self.stride = stride
        self.num_conv = 2

    def forward(self, inputs):
        basicblock = self.conv_a(inputs)
        basicblock = self.conv_b(basicblock)

        if self.downsample is not None:
            inputs = self.downsample(inputs)
        return inputs + basicblock


class NASBench201Network(nn.Module):
    def __init__(self, stem_out_channels, num_modules_per_stack, bn_affine=True, bn_momentum=0.1, bn_track_running_stats=True):
        super(NASBench201Network, self).__init__()
        self.channels = C = stem_out_channels
        self.num_modules = N = num_modules_per_stack
        self.num_labels = 10

        self.bn_momentum = bn_momentum
        self.bn_affine = bn_affine
        self.bn_track_running_stats = bn_track_running_stats

        self.stem = nn.Sequential(
            nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False),
            nn.BatchNorm2d(C, momentum=self.bn_momentum)
        )

        layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N
        layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N

        C_prev = C
        self.cells = nn.ModuleList()
        for i, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
            if reduction:
                cell = ResNetBasicBlock(C_prev, C_curr, 2, self.bn_affine, self.bn_momentum, self.bn_track_running_stats)
            else:
                cell = NASBench201Cell(i, C_prev, C_curr, 1, self.bn_affine, self.bn_momentum, self.bn_track_running_stats)
            self.cells.append(cell)
            C_prev = C_curr

        self.lastact = nn.Sequential(
            nn.BatchNorm2d(C_prev, momentum=self.bn_momentum),
            nn.ReLU(inplace=True)
        )
        self.global_pooling = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Linear(C_prev, self.num_labels)

    def forward(self, inputs):
        feature = self.stem(inputs)
        for cell in self.cells:
            feature = cell(feature)

        out = self.lastact(feature)
        out = self.global_pooling(out)
        out = out.view(out.size(0), -1)
        logits = self.classifier(out)

        return logits


def train(args, model, train_dataloader, valid_dataloader, criterion, optimizer, device):
    model = model.to(device)
    model.train()
    for epoch in range(args.epochs):
        for batch_idx, (data, target) in enumerate(train_dataloader):
            data, target = data.to(device), target.to(device)
            optimizer.zero_grad()
            output = model(data)
            loss = criterion(output, target)
            loss.backward()
            optimizer.step()

            if batch_idx % args.log_frequency == 0:
                logger.info('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                            epoch, batch_idx * len(data), len(train_dataloader.dataset),
                            100. * batch_idx / len(train_dataloader), loss.item()))
        model.eval()
        correct = 0
        test_loss = 0.0
        for data, target in valid_dataloader:
            data, target = data.to(device), target.to(device)
            output = model(data)
            test_loss += criterion(output, target).item()
            pred = output.argmax(dim=1, keepdim=True)
            correct += pred.eq(target.view_as(pred)).sum().item()
        test_loss /= len(valid_dataloader.dataset)
        accuracy = 100. * correct / len(valid_dataloader.dataset)
        logger.info('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(test_loss, correct,
                                                                                           len(valid_dataloader.dataset), accuracy))
        model.train()


if __name__ == '__main__':
    parser = argparse.ArgumentParser("nb201")
    parser.add_argument('--stem_out_channels', default=16, type=int)
    parser.add_argument('--unrolled', default=False, action='store_true')
    parser.add_argument('--batch_size', default=64, type=int)
    parser.add_argument('--epochs', default=50, type=int)
    parser.add_argument('--num_modules_per_stack', default=5, type=int)
    parser.add_argument('--log-frequency', default=10, type=int)
    parser.add_argument('--bn_momentum', default=0.1, type=int)
    parser.add_argument('--bn_affine', default=True, type=bool)
    parser.add_argument('--bn_track_running_stats', default=True, type=bool)
    parser.add_argument('--arch', default=None, help='json file which should meet requirements in NAS-Bench-201')
    parser.add_argument('--visualization', default=False, action='store_true')
    args = parser.parse_args()

    dataset_train, dataset_valid = datasets.get_dataset("cifar10")
    model = NASBench201Network(stem_out_channels=args.stem_out_channels,
                               num_modules_per_stack=args.num_modules_per_stack,
                               bn_affine=args.bn_affine,
                               bn_momentum=args.bn_momentum,
                               bn_track_running_stats=args.bn_track_running_stats)

    optim = torch.optim.SGD(model.parameters(), 0.025)
    lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optim, args.epochs, eta_min=0.001)
    criterion = nn.CrossEntropyLoss()

    if args.arch is not None:
        logger.info('model retraining...')
        with open(args.arch, 'r') as f:
            arch = json.load(f)
        for trial in query_nb201_trial_stats(arch, 200, 'cifar100'):
            pprint.pprint(trial)
        apply_fixed_architecture(model, args.arch)
        dataloader_train = DataLoader(dataset_train, batch_size=args.batch_size, shuffle=True, num_workers=0)
        dataloader_valid = DataLoader(dataset_valid, batch_size=args.batch_size, shuffle=True, num_workers=0)
        train(args, model, dataloader_train, dataloader_valid, criterion, optim,
              torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
        exit(0)

    trainer = enas.EnasTrainer(model,
                               loss=criterion,
                               metrics=lambda output, target: accuracy(output, target, topk=(1,)),
                               reward_function=reward_accuracy,
                               optimizer=optim,
                               callbacks=[LRSchedulerCallback(lr_scheduler), ArchitectureCheckpoint("./checkpoints")],
                               batch_size=args.batch_size,
                               num_epochs=args.epochs,
                               dataset_train=dataset_train,
                               dataset_valid=dataset_valid,
                               log_frequency=args.log_frequency)

    if args.visualization:
        trainer.enable_visualization()
    trainer.train()