supernet.py 3.75 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import argparse
import logging
import random

import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from nni.retiarii.oneshot.pytorch import SinglePathTrainer

from network import ShuffleNetV2OneShot, load_and_parse_state_dict
from utils import CrossEntropyLabelSmooth, accuracy, ToBGRTensor

logger = logging.getLogger("nni.spos.supernet")

if __name__ == "__main__":
    parser = argparse.ArgumentParser("SPOS Supernet Training")
    parser.add_argument("--imagenet-dir", type=str, default="./data/imagenet")
    parser.add_argument("--load-checkpoint", action="store_true", default=False)
    parser.add_argument("--spos-preprocessing", action="store_true", default=False,
                        help="When true, image values will range from 0 to 255 and use BGR "
                             "(as in original repo).")
    parser.add_argument("--workers", type=int, default=4)
    parser.add_argument("--batch-size", type=int, default=768)
    parser.add_argument("--epochs", type=int, default=120)
    parser.add_argument("--learning-rate", type=float, default=0.5)
    parser.add_argument("--momentum", type=float, default=0.9)
    parser.add_argument("--weight-decay", type=float, default=4E-5)
    parser.add_argument("--label-smooth", type=float, default=0.1)
    parser.add_argument("--log-frequency", type=int, default=10)
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--label-smoothing", type=float, default=0.1)

    args = parser.parse_args()

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

    model = ShuffleNetV2OneShot()
    if args.load_checkpoint:
        if not args.spos_preprocessing:
            logger.warning("You might want to use SPOS preprocessing if you are loading their checkpoints.")
        model.load_state_dict(load_and_parse_state_dict(), strict=False)
        logger.info(f'Model loaded from ./data/checkpoint-150000.pth.tar')
    model.cuda()
    if torch.cuda.device_count() > 1:  # exclude last gpu, saving for data preprocessing on gpu
        model = nn.DataParallel(model, device_ids=list(range(0, torch.cuda.device_count() - 1)))
    criterion = CrossEntropyLabelSmooth(1000, args.label_smoothing)
    optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate,
                                momentum=args.momentum, weight_decay=args.weight_decay)
    scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                  lambda step: (1.0 - step / args.epochs)
                                                  if step <= args.epochs else 0,
                                                  last_epoch=-1)
    if args.spos_preprocessing:
        trans = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
            transforms.RandomHorizontalFlip(0.5),
            ToBGRTensor(),
        ])
    else:
        trans = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.ToTensor()
        ])
    train_dataset = datasets.ImageNet(args.imagenet_dir, split='train', transform=trans)
    val_dataset = datasets.ImageNet(args.imagenet_dir, split='val', transform=trans)
    trainer = SinglePathTrainer(model, criterion, accuracy, optimizer,
                                args.epochs, train_dataset, val_dataset,
                                batch_size=args.batch_size,
                                log_frequency=args.log_frequency, workers=args.workers)
    trainer.fit()