network.py 4.99 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import pickle
import re

import torch
import nni.retiarii.nn.pytorch as nn
from nni.retiarii.nn.pytorch import LayerChoice
from nni.retiarii.serializer import model_wrapper

from blocks import ShuffleNetBlock, ShuffleXceptionBlock


@model_wrapper
class ShuffleNetV2OneShot(nn.Module):
    block_keys = [
        'shufflenet_3x3',
        'shufflenet_5x5',
        'shufflenet_7x7',
        'xception_3x3',
    ]

    def __init__(self, input_size=224, first_conv_channels=16, last_conv_channels=1024,
                 n_classes=1000, affine=False):
        super().__init__()

        assert input_size % 32 == 0
        self.stage_blocks = [4, 4, 8, 4]
        self.stage_channels = [64, 160, 320, 640]
        self._input_size = input_size
        self._feature_map_size = input_size
        self._first_conv_channels = first_conv_channels
        self._last_conv_channels = last_conv_channels
        self._n_classes = n_classes
        self._affine = affine
        self._layerchoice_count = 0

        # building first layer
        self.first_conv = nn.Sequential(
            nn.Conv2d(3, first_conv_channels, 3, 2, 1, bias=False),
            nn.BatchNorm2d(first_conv_channels, affine=affine),
            nn.ReLU(inplace=True),
        )
        self._feature_map_size //= 2

        p_channels = first_conv_channels
        features = []
        for num_blocks, channels in zip(self.stage_blocks, self.stage_channels):
            features.extend(self._make_blocks(num_blocks, p_channels, channels))
            p_channels = channels
        self.features = nn.Sequential(*features)

        self.conv_last = nn.Sequential(
            nn.Conv2d(p_channels, last_conv_channels, 1, 1, 0, bias=False),
            nn.BatchNorm2d(last_conv_channels, affine=affine),
            nn.ReLU(inplace=True),
        )
        self.globalpool = nn.AvgPool2d(self._feature_map_size)
        self.dropout = nn.Dropout(0.1)
        self.classifier = nn.Sequential(
            nn.Linear(last_conv_channels, n_classes, bias=False),
        )

        self._initialize_weights()

    def _make_blocks(self, blocks, in_channels, channels):
        result = []
        for i in range(blocks):
            stride = 2 if i == 0 else 1
            inp = in_channels if i == 0 else channels
            oup = channels

            base_mid_channels = channels // 2
            mid_channels = int(base_mid_channels)  # prepare for scale
            self._layerchoice_count += 1
            choice_block = LayerChoice([
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=3, stride=stride, affine=self._affine),
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=5, stride=stride, affine=self._affine),
                ShuffleNetBlock(inp, oup, mid_channels=mid_channels, ksize=7, stride=stride, affine=self._affine),
                ShuffleXceptionBlock(inp, oup, mid_channels=mid_channels, stride=stride, affine=self._affine)
            ], label="LayerChoice" + str(self._layerchoice_count))
            result.append(choice_block)

            if stride == 2:
                self._feature_map_size //= 2
        return result

    def forward(self, x):
        bs = x.size(0)
        x = self.first_conv(x)
        x = self.features(x)
        x = self.conv_last(x)
        x = self.globalpool(x)

        x = self.dropout(x)
        x = x.contiguous().view(bs, -1)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for name, m in self.named_modules():
            if isinstance(m, nn.Conv2d):
                if 'first' in name:
                    torch.nn.init.normal_(m.weight, 0, 0.01)
                else:
                    torch.nn.init.normal_(m.weight, 0, 1.0 / m.weight.shape[1])
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                if m.weight is not None:
                    torch.nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0.0001)
                torch.nn.init.constant_(m.running_mean, 0)
            elif isinstance(m, nn.BatchNorm1d):
                torch.nn.init.constant_(m.weight, 1)
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0.0001)
                torch.nn.init.constant_(m.running_mean, 0)
            elif isinstance(m, nn.Linear):
                torch.nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    torch.nn.init.constant_(m.bias, 0)


def load_and_parse_state_dict(filepath="./data/checkpoint-150000.pth.tar"):
    checkpoint = torch.load(filepath, map_location=torch.device("cpu"))
    if "state_dict" in checkpoint:
        checkpoint = checkpoint["state_dict"]
    result = dict()
    for k, v in checkpoint.items():
        if k.startswith("module."):
            k = k[len("module."):]
        result[k] = v
    return result