evaluation.py 6.54 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

import os
import argparse
import logging
import random

import numpy as np
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from nni.retiarii import fixed_arch
from nni.retiarii.oneshot.pytorch.utils import AverageMeterGroup
from torch.utils.tensorboard import SummaryWriter

from network import ShuffleNetV2OneShot
from utils import CrossEntropyLabelSmooth, accuracy, ToBGRTensor

logger = logging.getLogger("nni.spos.scratch")


def train(epoch, model, criterion, optimizer, loader, writer, args):
    model.train()
    meters = AverageMeterGroup()
    cur_lr = optimizer.param_groups[0]["lr"]

    for step, (x, y) in enumerate(loader):
        x, y = x.to('cuda'), y.to('cuda')
        cur_step = len(loader) * epoch + step
        optimizer.zero_grad()
        logits = model(x)
        loss = criterion(logits, y)
        loss.backward()
        optimizer.step()

        metrics = accuracy(logits, y)
        metrics["loss"] = loss.item()
        meters.update(metrics)

        writer.add_scalar("lr", cur_lr, global_step=cur_step)
        writer.add_scalar("loss/train", loss.item(), global_step=cur_step)
        writer.add_scalar("acc1/train", metrics["acc1"], global_step=cur_step)
        writer.add_scalar("acc5/train", metrics["acc5"], global_step=cur_step)

        if step % args.log_frequency == 0 or step + 1 == len(loader):
            logger.info("Epoch [%d/%d] Step [%d/%d]  %s", epoch + 1,
                        args.epochs, step + 1, len(loader), meters)

    logger.info("Epoch %d training summary: %s", epoch + 1, meters)


def validate(epoch, model, criterion, loader, writer, args):
    model.eval()
    meters = AverageMeterGroup()
    with torch.no_grad():
        for step, (x, y) in enumerate(loader):
            x, y = x.to('cuda'), y.to('cuda')
            logits = model(x)
            loss = criterion(logits, y)
            metrics = accuracy(logits, y)
            metrics["loss"] = loss.item()
            meters.update(metrics)

            if step % args.log_frequency == 0 or step + 1 == len(loader):
                logger.info("Epoch [%d/%d] Validation Step [%d/%d]  %s", epoch + 1,
                            args.epochs, step + 1, len(loader), meters)

    writer.add_scalar("loss/test", meters.loss.avg, global_step=epoch)
    writer.add_scalar("acc1/test", meters.acc1.avg, global_step=epoch)
    writer.add_scalar("acc5/test", meters.acc5.avg, global_step=epoch)

    logger.info("Epoch %d validation: top1 = %f, top5 = %f", epoch + 1, meters.acc1.avg, meters.acc5.avg)


def dump_checkpoint(model, epoch, checkpoint_dir):
    if isinstance(model, nn.DataParallel):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)
    dest_path = os.path.join(checkpoint_dir, "epoch_{}.pth.tar".format(epoch))
    logger.info("Saving model to %s", dest_path)
    torch.save(state_dict, dest_path)


if __name__ == "__main__":
    parser = argparse.ArgumentParser("SPOS Training From Scratch")
    parser.add_argument("--imagenet-dir", type=str, default="./data/imagenet")
    parser.add_argument("--tb-dir", type=str, default="runs")
    parser.add_argument("--architecture", type=str, default="architecture_final.json")
    parser.add_argument("--workers", type=int, default=4)
    parser.add_argument("--batch-size", type=int, default=1024)
    parser.add_argument("--epochs", type=int, default=240)
    parser.add_argument("--learning-rate", type=float, default=0.5)
    parser.add_argument("--momentum", type=float, default=0.9)
    parser.add_argument("--weight-decay", type=float, default=4E-5)
    parser.add_argument("--label-smooth", type=float, default=0.1)
    parser.add_argument("--log-frequency", type=int, default=10)
    parser.add_argument("--lr-decay", type=str, default="linear")
    parser.add_argument("--seed", type=int, default=42)
    parser.add_argument("--spos-preprocessing", default=False, action="store_true")
    parser.add_argument("--label-smoothing", type=float, default=0.1)

    args = parser.parse_args()

    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)
    random.seed(args.seed)
    torch.backends.cudnn.deterministic = True

    with fixed_arch(args.architecture):
        model = ShuffleNetV2OneShot(affine=True)
    model.cuda()
    if torch.cuda.device_count() > 1:  # exclude last gpu, saving for data preprocessing on gpu
        model = nn.DataParallel(model, device_ids=list(range(0, torch.cuda.device_count() - 1)))
    criterion = CrossEntropyLabelSmooth(1000, args.label_smoothing)
    optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate,
                                momentum=args.momentum, weight_decay=args.weight_decay)
    if args.lr_decay == "linear":
        scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,
                                                      lambda step: (1.0 - step / args.epochs)
                                                      if step <= args.epochs else 0,
                                                      last_epoch=-1)
    elif args.lr_decay == "cosine":
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs, 1E-3)
    else:
        raise ValueError("'%s' not supported." % args.lr_decay)
    writer = SummaryWriter(log_dir=args.tb_dir)

    if args.spos_preprocessing:
        trans = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4),
            transforms.RandomHorizontalFlip(0.5),
            ToBGRTensor(),
        ])
    else:
        trans = transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.ToTensor()
        ])
    train_dataset = datasets.ImageNet(args.imagenet_dir, split='train', transform=trans)
    train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.workers)
    val_dataset = datasets.ImageNet(args.imagenet_dir, split='val', transform=trans)
    valid_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.batch_size, num_workers=args.workers)                      
    for epoch in range(args.epochs):
        train(epoch, model, criterion, optimizer, train_loader, writer, args)
        validate(epoch, model, criterion, valid_loader, writer, args)
        scheduler.step()
        dump_checkpoint(model, epoch, "scratch_checkpoints")

    writer.close()