putils.py 3.38 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import torch
import nni.retiarii.nn.pytorch as nn


def get_parameters(model, keys=None, mode='include'):
    if keys is None:
        for name, param in model.named_parameters():
            yield param
    elif mode == 'include':
        for name, param in model.named_parameters():
            flag = False
            for key in keys:
                if key in name:
                    flag = True
                    break
            if flag:
                yield param
    elif mode == 'exclude':
        for name, param in model.named_parameters():
            flag = True
            for key in keys:
                if key in name:
                    flag = False
                    break
            if flag:
                yield param
    else:
        raise ValueError('do not support: %s' % mode)


def get_same_padding(kernel_size):
    if isinstance(kernel_size, tuple):
        assert len(kernel_size) == 2, 'invalid kernel size: %s' % kernel_size
        p1 = get_same_padding(kernel_size[0])
        p2 = get_same_padding(kernel_size[1])
        return p1, p2
    assert isinstance(kernel_size, int), 'kernel size should be either `int` or `tuple`'
    assert kernel_size % 2 > 0, 'kernel size should be odd number'
    return kernel_size // 2


def build_activation(act_func, inplace=True):
    if act_func == 'relu':
        return nn.ReLU(inplace=inplace)
    elif act_func == 'relu6':
        return nn.ReLU6(inplace=inplace)
    elif act_func == 'tanh':
        return nn.Tanh()
    elif act_func == 'sigmoid':
        return nn.Sigmoid()
    elif act_func is None:
        return None
    else:
        raise ValueError('do not support: %s' % act_func)


def make_divisible(v, divisor, min_val=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    """
    if min_val is None:
        min_val = divisor
    new_v = max(min_val, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


def accuracy(output, target, topk=(1,)):
    """ Computes the precision@k for the specified values of k """
    maxk = max(topk)
    batch_size = target.size(0)

    _, pred = output.topk(maxk, 1, True, True)
    pred = pred.t()
    # one-hot case
    if target.ndimension() > 1:
        target = target.max(1)[1]

    correct = pred.eq(target.view(1, -1).expand_as(pred))

    res = dict()
    for k in topk:
        correct_k = correct[:k].reshape(-1).float().sum(0)
        res["acc{}".format(k)] = correct_k.mul_(1.0 / batch_size).item()
    return res


class LabelSmoothingLoss(nn.Module):
    def __init__(self, smoothing=0.1, dim=-1):
        super(LabelSmoothingLoss, self).__init__()
        self.confidence = 1.0 - smoothing
        self.smoothing = smoothing
        self.dim = dim

    def forward(self, pred, target):
        pred = pred.log_softmax(dim=self.dim)
        num_classes = pred.size(self.dim)
        with torch.no_grad():
            true_dist = torch.zeros_like(pred)
            true_dist.fill_(self.smoothing / (num_classes - 1))
            true_dist.scatter_(1, target.data.unsqueeze(1), self.confidence)
        return torch.mean(torch.sum(-true_dist * pred, dim=self.dim))