"test/ut/tools/annotation/examples/mnist_with_annotation.py" did not exist on "c94996c708c1f543d0c890f7a9027c07992b20d2"
main.py 7.34 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import json
import logging
import os
import sys
from argparse import ArgumentParser

import torch
from torchvision import transforms
from nni.retiarii.fixed import fixed_arch

import datasets
from model import SearchMobileNet
from putils import LabelSmoothingLoss, accuracy, get_parameters
from retrain import Retrain

logger = logging.getLogger('nni_proxylessnas')

if __name__ == "__main__":
    parser = ArgumentParser("proxylessnas")
    # configurations of the model
    parser.add_argument("--n_cell_stages", default='4,4,4,4,4,1', type=str)
    parser.add_argument("--stride_stages", default='2,2,2,1,2,1', type=str)
    parser.add_argument("--width_stages", default='24,40,80,96,192,320', type=str)
    parser.add_argument("--bn_momentum", default=0.1, type=float)
    parser.add_argument("--bn_eps", default=1e-3, type=float)
    parser.add_argument("--dropout_rate", default=0, type=float)
    parser.add_argument("--no_decay_keys", default='bn', type=str, choices=[None, 'bn', 'bn#bias'])
    parser.add_argument('--grad_reg_loss_type', default='add#linear', type=str, choices=['add#linear', 'mul#log'])
    parser.add_argument('--grad_reg_loss_lambda', default=1e-1, type=float)  # grad_reg_loss_params
    parser.add_argument('--grad_reg_loss_alpha', default=0.2, type=float)  # grad_reg_loss_params
    parser.add_argument('--grad_reg_loss_beta',  default=0.3, type=float)  # grad_reg_loss_params
    parser.add_argument("--applied_hardware", default=None, type=str, help='the hardware to predict model latency')
    parser.add_argument("--reference_latency", default=None, type=float, help='the reference latency in specified hardware')
    # configurations of imagenet dataset
    parser.add_argument("--data_path", default='/data/imagenet/', type=str)
    parser.add_argument("--train_batch_size", default=256, type=int)
    parser.add_argument("--test_batch_size", default=500, type=int)
    parser.add_argument("--n_worker", default=32, type=int)
    parser.add_argument("--resize_scale", default=0.08, type=float)
    parser.add_argument("--distort_color", default='normal', type=str, choices=['normal', 'strong', 'None'])
    # configurations for training mode
    parser.add_argument("--train_mode", default='search', type=str, choices=['search', 'retrain'])
    # configurations for search
    parser.add_argument("--checkpoint_path", default='./search_mobile_net.pt', type=str)
    parser.add_argument("--arch_path", default='./arch_path.pt', type=str)
    parser.add_argument("--no-warmup", dest='warmup', action='store_false')
    # configurations for retrain
    parser.add_argument("--exported_arch_path", default=None, type=str)

    args = parser.parse_args()
    if args.train_mode == 'retrain' and args.exported_arch_path is None:
        logger.error('When --train_mode is retrain, --exported_arch_path must be specified.')
        sys.exit(-1)

    if args.train_mode == 'retrain':
        assert os.path.isfile(args.exported_arch_path), \
            "exported_arch_path {} should be a file.".format(args.exported_arch_path)
        with fixed_arch(args.exported_arch_path):
            model = SearchMobileNet(width_stages=[int(i) for i in args.width_stages.split(',')],
                                    n_cell_stages=[int(i) for i in args.n_cell_stages.split(',')],
                                    stride_stages=[int(i) for i in args.stride_stages.split(',')],
                                    n_classes=1000,
                                    dropout_rate=args.dropout_rate,
                                    bn_param=(args.bn_momentum, args.bn_eps))
    else:
        model = SearchMobileNet(width_stages=[int(i) for i in args.width_stages.split(',')],
                                n_cell_stages=[int(i) for i in args.n_cell_stages.split(',')],
                                stride_stages=[int(i) for i in args.stride_stages.split(',')],
                                n_classes=1000,
                                dropout_rate=args.dropout_rate,
                                bn_param=(args.bn_momentum, args.bn_eps))
    logger.info('SearchMobileNet model create done')
    model.init_model()
    logger.info('SearchMobileNet model init done')

    # move network to GPU if available
    if torch.cuda.is_available():
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    logger.info('Creating data provider...')
    data_provider = datasets.ImagenetDataProvider(save_path=args.data_path,
                                                  train_batch_size=args.train_batch_size,
                                                  test_batch_size=args.test_batch_size,
                                                  valid_size=None,
                                                  n_worker=args.n_worker,
                                                  resize_scale=args.resize_scale,
                                                  distort_color=args.distort_color)
    logger.info('Creating data provider done')

    if args.no_decay_keys:
        keys = args.no_decay_keys
        momentum, nesterov = 0.9, True
        optimizer = torch.optim.SGD([
            {'params': get_parameters(model, keys, mode='exclude'), 'weight_decay': 4e-5},
            {'params': get_parameters(model, keys, mode='include'), 'weight_decay': 0},
        ], lr=0.05, momentum=momentum, nesterov=nesterov)
    else:
        momentum, nesterov = 0.9, True
        optimizer = torch.optim.SGD(get_parameters(model), lr=0.05, momentum=momentum, nesterov=nesterov, weight_decay=4e-5)

    if args.grad_reg_loss_type == 'add#linear':
        grad_reg_loss_params = {'lambda': args.grad_reg_loss_lambda}
    elif args.grad_reg_loss_type == 'mul#log':
        grad_reg_loss_params = {
            'alpha': args.grad_reg_loss_alpha,
            'beta': args.grad_reg_loss_beta,
        }
    else:
        args.grad_reg_loss_params = None

    if args.train_mode == 'search':
        from nni.retiarii.oneshot.pytorch import ProxylessTrainer
        from torchvision.datasets import ImageNet
        normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                         std=[0.229, 0.224, 0.225])
        dataset = ImageNet(args.data_path, transform=transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))
        trainer = ProxylessTrainer(model,
                                   loss=LabelSmoothingLoss(),
                                   dataset=dataset,
                                   optimizer=optimizer,
                                   metrics=lambda output, target: accuracy(output, target, topk=(1, 5,)),
                                   num_epochs=120,
                                   log_frequency=10,
                                   grad_reg_loss_type=args.grad_reg_loss_type, 
                                   grad_reg_loss_params=grad_reg_loss_params, 
                                   applied_hardware=args.applied_hardware, dummy_input=(1, 3, 224, 224),
                                   ref_latency=args.reference_latency)
        trainer.fit()
        print('Final architecture:', trainer.export())
        json.dump(trainer.export(), open('checkpoint.json', 'w'))
    elif args.train_mode == 'retrain':
        # this is retrain
        trainer = Retrain(model, optimizer, device, data_provider, n_epochs=300)
        trainer.run()