retrain.py 9.59 KB
Newer Older
qianyj's avatar
qianyj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT license.

from __future__ import absolute_import, division, print_function

import argparse
import logging
import os
import time
import torch
import torchvision

import numpy as np

from datasets import PFLDDatasets
from lib.builder import search_space
from lib.ops import PRIMITIVES
from lib.utils import PFLDLoss, accuracy
from nni.algorithms.nas.pytorch.fbnet import (
    LookUpTable,
    NASConfig,
    supernet_sample,
)
from nni.nas.pytorch.utils import AverageMeter
from torch.utils.data import DataLoader

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


def validate(model, auxiliarynet, valid_loader, device, logger):
    """Do validation."""
    model.eval()
    auxiliarynet.eval()

    losses, nme = list(), list()
    with torch.no_grad():
        for i, (img, land_gt, angle_gt) in enumerate(valid_loader):
            img = img.to(device, non_blocking=True)
            landmark_gt = land_gt.to(device, non_blocking=True)
            angle_gt = angle_gt.to(device, non_blocking=True)

            landmark, _ = model(img)

            # compute the l2 loss
            landmark = landmark.squeeze()
            l2_diff = torch.sum((landmark_gt - landmark) ** 2, axis=1)
            loss = torch.mean(l2_diff)
            losses.append(loss.cpu().detach().numpy())

            # compute the accuracy
            landmark = landmark.cpu().detach().numpy()
            landmark = landmark.reshape(landmark.shape[0], -1, 2)
            landmark_gt = landmark_gt.cpu().detach().numpy()
            landmark_gt = landmark_gt.reshape(landmark_gt.shape[0], -1, 2)
            _, nme_i = accuracy(landmark, landmark_gt)
            for item in nme_i:
                nme.append(item)

    logger.info("===> Evaluate:")
    logger.info(
        "Eval set: Average loss: {:.4f} nme: {:.4f}".format(
            np.mean(losses), np.mean(nme)
        )
    )
    return np.mean(losses), np.mean(nme)


def train_epoch(
    model,
    auxiliarynet,
    criterion,
    train_loader,
    device,
    epoch,
    optimizer,
    logger,
):
    """Train one epoch."""
    model.train()
    auxiliarynet.train()

    batch_time = AverageMeter("batch_time")
    data_time = AverageMeter("data_time")
    losses = AverageMeter("losses")

    end = time.time()
    for i, (img, landmark_gt, angle_gt) in enumerate(train_loader):
        data_time.update(time.time() - end)
        img = img.to(device, non_blocking=True)
        landmark_gt = landmark_gt.to(device, non_blocking=True)
        angle_gt = angle_gt.to(device, non_blocking=True)

        lands, feats = model(img)
        landmarks = lands.squeeze()
        angle = auxiliarynet(feats)

        # task loss
        weighted_loss, _ = criterion(
            landmark_gt, angle_gt, angle, landmarks
        )
        loss = weighted_loss

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        # measure accuracy and record loss
        losses.update(np.squeeze(loss.cpu().detach().numpy()), img.size(0))

        if i % 10 == 0:
            batch_log = (
                "Train [{0}][{1}]\t"
                "Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t"
                "Data {data_time.val:.3f} ({data_time.avg:.3f})\t"
                "Loss {losses.val:.4f} ({losses.avg:.4f})".format(
                    epoch + 1,
                    i,
                    batch_time=batch_time,
                    data_time=data_time,
                    losses=losses,
                )
            )
            logger.info(batch_log)


def save_checkpoint(model, auxiliarynet, optimizer, filename, logger):
    """Save checkpoint of the whole model."""
    state = {
        "pfld_backbone": model.state_dict(),
        "auxiliarynet": auxiliarynet.state_dict(),
        "optim": optimizer.state_dict(),
    }
    torch.save(state, filename)
    logger.info("Save checkpoint to {0:}".format(filename))


def main(args):
    """ The main function for supernet pre-training and subnet fine-tuning. """
    logging.basicConfig(
        format="[%(asctime)s] [p%(process)s] [%(pathname)s\
            :%(lineno)d] [%(levelname)s] %(message)s",
        level=logging.INFO,
        handlers=[
            logging.FileHandler(args.log_file, mode="w"),
            logging.StreamHandler(),
        ],
    )

    # print the information of arguments
    for arg in vars(args):
        s = arg + ": " + str(getattr(args, arg))
        logging.info(s)

    # for 106 landmarks
    num_points = 106
    # list of device ids, and the number of workers for data loading
    device_ids = [int(id) for id in args.dev_id.split(",")]
    dev_num = len(device_ids)
    num_workers = 4 * dev_num

    # import subnet for fine-tuning
    from lib.subnet import PFLDInference, AuxiliaryNet

    # the configuration for training control
    nas_config = NASConfig(
        model_dir=args.snapshot,
        search_space=search_space,
    )
    # look-up table with information of search space, flops per block, etc.
    lookup_table = LookUpTable(config=nas_config, primitives=PRIMITIVES)

    check = torch.load(args.supernet, map_location=torch.device("cpu"))
    sampled_arch = check["arch_sample"]
    logging.info(sampled_arch)
    # create subnet
    pfld_backbone = PFLDInference(lookup_table, sampled_arch, num_points)

    # pre-load the weights from pre-trained supernet
    state_dict = check["pfld_backbone"]
    supernet_sample(pfld_backbone, state_dict, sampled_arch, lookup_table)

    # the auxiliary-net of PFLD to predict the pose angle
    auxiliarynet = AuxiliaryNet()

    # DataParallel
    pfld_backbone = torch.nn.DataParallel(pfld_backbone, device_ids=device_ids)
    pfld_backbone.to(device)
    auxiliarynet = torch.nn.DataParallel(auxiliarynet, device_ids=device_ids)
    auxiliarynet.to(device)

    # main task loss
    criterion = PFLDLoss()

    # optimizer / scheduler for weight train
    optimizer = torch.optim.RMSprop(
        [
            {"params": pfld_backbone.parameters()},
            {"params": auxiliarynet.parameters()},
        ],
        lr=args.base_lr,
        momentum=0.0,
        weight_decay=args.weight_decay,
    )

    scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
        optimizer, T_max=args.end_epoch, last_epoch=-1
    )

    # data argmentation and dataloader
    transform = torchvision.transforms.Compose(
        [torchvision.transforms.ToTensor()]
    )
    # the landmark dataset with 106 points is default used
    train_dataset = PFLDDatasets(
        os.path.join(args.data_root, "train_data/list.txt"),
        transform,
        data_root=args.data_root,
        img_size=args.img_size,
    )
    dataloader = DataLoader(
        train_dataset,
        batch_size=args.train_batchsize,
        shuffle=True,
        num_workers=num_workers,
        pin_memory=True,
        drop_last=False,
    )

    val_dataset = PFLDDatasets(
        os.path.join(args.data_root, "test_data/list.txt"),
        transform,
        data_root=args.data_root,
        img_size=args.img_size,
    )
    val_dataloader = DataLoader(
        val_dataset,
        batch_size=args.val_batchsize,
        shuffle=False,
        num_workers=num_workers,
        pin_memory=True,
    )

    # start finetune
    ckpt_path = args.snapshot
    val_nme = 1e6

    for epoch in range(0, args.end_epoch):
        logging.info("\n--------Train epoch: %d--------\n", epoch + 1)
        # update the weight parameters
        train_epoch(
            pfld_backbone,
            auxiliarynet,
            criterion,
            dataloader,
            device,
            epoch,
            optimizer,
            logging,
        )
        # adjust learning rate
        scheduler.step()

        # validate
        _, nme = validate(
            pfld_backbone, auxiliarynet, val_dataloader, device, logging
        )

        if epoch % 10 == 0:
            filename = os.path.join(ckpt_path, "checkpoint_%s.pth" % epoch)
            save_checkpoint(
                pfld_backbone, auxiliarynet, optimizer, filename, logging
            )

        if nme < val_nme:
            filename = os.path.join(ckpt_path, "checkpoint_best.pth")
            save_checkpoint(
                pfld_backbone, auxiliarynet, optimizer, filename, logging
            )
            val_nme = nme
        logging.info("Best nme: {:.4f}".format(val_nme))


def parse_args():
    """ Parse the user arguments. """
    parser = argparse.ArgumentParser(description="Finetuning for PFLD")
    parser.add_argument("--dev_id", dest="dev_id", default="0", type=str)
    parser.add_argument("--base_lr", default=0.0001, type=int)
    parser.add_argument("--weight-decay", "--wd", default=1e-6, type=float)
    parser.add_argument("--img_size", default=112, type=int)
    parser.add_argument("--supernet", default="", type=str, metavar="PATH")
    parser.add_argument("--end_epoch", default=300, type=int)
    parser.add_argument(
        "--snapshot", default="models", type=str, metavar="PATH"
    )
    parser.add_argument("--log_file", default="train.log", type=str)
    parser.add_argument(
        "--data_root", default="/dataset", type=str, metavar="PATH"
    )
    parser.add_argument("--train_batchsize", default=256, type=int)
    parser.add_argument("--val_batchsize", default=128, type=int)
    args = parser.parse_args()
    args.snapshot = os.path.join(args.snapshot, 'subnet')
    args.log_file = os.path.join(args.snapshot, "{}.log".format('subnet'))
    os.makedirs(args.snapshot, exist_ok=True)
    return args


if __name__ == "__main__":
    args = parse_args()
    main(args)